Patents by Inventor Susanne Westenhöfer
Susanne Westenhöfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12015115Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.Type: GrantFiled: January 13, 2021Date of Patent: June 18, 2024Assignee: AMS SENSORS SINGAPORE PTE. LTD.Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
-
Patent number: 11630026Abstract: A method for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit is disclosed. The method comprises the following steps: At least a predefined portion of the optical projection unit is illuminated so that an image is generated by at least two channels of the predefined portion of the multi-channel optical projection unit. At least one characteristic quantity is determined based on the analysis of the image, wherein a value of the characteristic quantity is associated with a characteristic feature of the projection unit, a defect of the projection unit and/or a defect class of the projection unit. The quality of the projection unit is assessed based on the at least one characteristic quantity. Moreover, a test system for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit and a computer program are disclosed.Type: GrantFiled: September 2, 2020Date of Patent: April 18, 2023Inventors: Isabel Agireen, Katrin Schindler, Wilfried Noell, Sophiane Tournois, Susanne Westenhoefer
-
Patent number: 11036309Abstract: The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.Type: GrantFiled: July 17, 2014Date of Patent: June 15, 2021Assignee: ams Sensors Singapore Pte. Ltd.Inventors: Jens Geiger, Susanne Westenhöfer
-
Publication number: 20210135077Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.Type: ApplicationFiled: January 13, 2021Publication date: May 6, 2021Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
-
Publication number: 20210063863Abstract: A method for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit is disclosed. The method comprises the following steps: At least a predefined portion of the optical projection unit is illuminated so that an image is generated by at least two channels of the predefined portion of the multi-channel optical projection unit. At least one characteristic quantity is determined based on the analysis of the image, wherein a value of the characteristic quantity is associated with a characteristic feature of the projection unit, a defect of the projection unit and/or a defect class of the projection unit. The quality of the projection unit is assessed based on the at least one characteristic quantity.Type: ApplicationFiled: September 2, 2020Publication date: March 4, 2021Inventors: Isabel AGIREEN, Katrin SCHINDLER, Wilfried NOELL, Sophiane TOURNOIS, Susanne WESTENHOEFER
-
Publication number: 20200066957Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.Type: ApplicationFiled: January 19, 2017Publication date: February 27, 2020Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
-
Patent number: 10527762Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).Type: GrantFiled: February 24, 2017Date of Patent: January 7, 2020Assignee: AMS SENSORS SINGAPORE PTE. LTD.Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
-
Patent number: 10199426Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.Type: GrantFiled: December 1, 2017Date of Patent: February 5, 2019Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Patent number: 10193026Abstract: An optoelectronic module includes a cover substrate including a passive optical element, a base substrate including an optoelectronic device, and a spacer layer joining the cover substrate to the base substrate. The spacer layer includes multiple first spacer elements fixed to a surface of the cover substrate and multiple second spacer elements fixed to a surface of the base substrate, in which each first spacer element is joined to a corresponding second spacer element through an adhesive layer, and in which the cover substrate, base substrate, and spacer layer define an interior region of the module in which the optical element is aligned with the optoelectronic device.Type: GrantFiled: October 1, 2014Date of Patent: January 29, 2019Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Susanne Westenhöfer, Simon Gubser
-
Patent number: 10186540Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.Type: GrantFiled: June 18, 2015Date of Patent: January 22, 2019Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Publication number: 20180102394Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.Type: ApplicationFiled: December 1, 2017Publication date: April 12, 2018Applicant: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Patent number: 9859327Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.Type: GrantFiled: December 2, 2016Date of Patent: January 2, 2018Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Patent number: 9746349Abstract: An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another.Type: GrantFiled: September 2, 2013Date of Patent: August 29, 2017Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Alexander Bietsch, Susanne Westenhöfer, Simon Gubser, Samuele Laffranchini
-
Publication number: 20170235026Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).Type: ApplicationFiled: February 24, 2017Publication date: August 17, 2017Applicant: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
-
Patent number: 9610743Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).Type: GrantFiled: October 14, 2015Date of Patent: April 4, 2017Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
-
Publication number: 20170084663Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.Type: ApplicationFiled: December 2, 2016Publication date: March 23, 2017Applicant: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Patent number: 9543354Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.Type: GrantFiled: July 24, 2014Date of Patent: January 10, 2017Assignee: Heptagon Micro Optics Pte. Ltd.Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
-
Publication number: 20160247976Abstract: An optoelectronic module includes a cover substrate including a passive optical element, a base substrate including an optoelectronic device, and a spacer layer joining the cover substrate to the base substrate. The spacer layer includes multiple first spacer elements fixed to a surface of the cover substrate and multiple second spacer elements fixed to a surface of the base substrate, in which each first spacer element is joined to a corresponding second spacer element through an adhesive layer, and in which the cover substrate, base substrate, and spacer layer define an interior region of the module in which the optical element is aligned with the optoelectronic device.Type: ApplicationFiled: October 1, 2014Publication date: August 25, 2016Inventors: Hartmut RUDMANN, Susanne WESTENHÖFER, Simon GUBSER
-
Publication number: 20160216777Abstract: The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.Type: ApplicationFiled: July 17, 2014Publication date: July 28, 2016Inventors: Jens Geiger, Susanne Westenhöfer
-
Publication number: 20160216138Abstract: An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another.Type: ApplicationFiled: September 2, 2013Publication date: July 28, 2016Inventors: Hartmut Rudmann, Alexander Bietsch, Susanne Westenhöfer, Simon Gubser, Samuele Laffranchini