Patents by Inventor Susanne Westenhöfer

Susanne Westenhöfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12015115
    Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: June 18, 2024
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
  • Patent number: 11630026
    Abstract: A method for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit is disclosed. The method comprises the following steps: At least a predefined portion of the optical projection unit is illuminated so that an image is generated by at least two channels of the predefined portion of the multi-channel optical projection unit. At least one characteristic quantity is determined based on the analysis of the image, wherein a value of the characteristic quantity is associated with a characteristic feature of the projection unit, a defect of the projection unit and/or a defect class of the projection unit. The quality of the projection unit is assessed based on the at least one characteristic quantity. Moreover, a test system for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit and a computer program are disclosed.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: April 18, 2023
    Inventors: Isabel Agireen, Katrin Schindler, Wilfried Noell, Sophiane Tournois, Susanne Westenhoefer
  • Patent number: 11036309
    Abstract: The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: June 15, 2021
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Jens Geiger, Susanne Westenhöfer
  • Publication number: 20210135077
    Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
  • Publication number: 20210063863
    Abstract: A method for assessing the quality of a multi-channel micro- and/or subwavelength-optical projection unit is disclosed. The method comprises the following steps: At least a predefined portion of the optical projection unit is illuminated so that an image is generated by at least two channels of the predefined portion of the multi-channel optical projection unit. At least one characteristic quantity is determined based on the analysis of the image, wherein a value of the characteristic quantity is associated with a characteristic feature of the projection unit, a defect of the projection unit and/or a defect class of the projection unit. The quality of the projection unit is assessed based on the at least one characteristic quantity.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 4, 2021
    Inventors: Isabel AGIREEN, Katrin SCHINDLER, Wilfried NOELL, Sophiane TOURNOIS, Susanne WESTENHOEFER
  • Publication number: 20200066957
    Abstract: An optoelectronic module includes a spacer with an optical component mounting surface, a fluid permeable channel, and a module mounting surface. The fluid permeable channel and module mounting surface allow the channels to be sealed to foreign matter during certain manufacturing steps and to remain free from blockages, such as solidified flux, during certain manufacturing steps. Further, the channels can permit heat to escape from the optoelectronic module during operation.
    Type: Application
    Filed: January 19, 2017
    Publication date: February 27, 2020
    Inventors: Tobias Senn, Julien Boucart, Susanne Westenhöfer
  • Patent number: 10527762
    Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 7, 2020
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
  • Patent number: 10199426
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 5, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 10193026
    Abstract: An optoelectronic module includes a cover substrate including a passive optical element, a base substrate including an optoelectronic device, and a spacer layer joining the cover substrate to the base substrate. The spacer layer includes multiple first spacer elements fixed to a surface of the cover substrate and multiple second spacer elements fixed to a surface of the base substrate, in which each first spacer element is joined to a corresponding second spacer element through an adhesive layer, and in which the cover substrate, base substrate, and spacer layer define an interior region of the module in which the optical element is aligned with the optoelectronic device.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 29, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Susanne Westenhöfer, Simon Gubser
  • Patent number: 10186540
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: January 22, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20180102394
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 12, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 9859327
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 2, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 9746349
    Abstract: An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: August 29, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Alexander Bietsch, Susanne Westenhöfer, Simon Gubser, Samuele Laffranchini
  • Publication number: 20170235026
    Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).
    Type: Application
    Filed: February 24, 2017
    Publication date: August 17, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
  • Patent number: 9610743
    Abstract: A device comprises at least one optics member (O) comprising at least one transparent portion (t) and at least one blocking portion (b). The at least one transparent portion (t) is made of one or more materials substantially transparent for light of at least a specific spectral range, referred to as transparent materials, and the at least one blocking portion (b) is made of one or more materials substantially non-transparent for light of the specific spectral range, referred to as non-transparent materials. The transparent portion (t) comprises at least one passive optical component (L). The at least one passive optical component (L) comprises a transparent element (6) having two opposing approximately flat surfaces substantially perpendicular to a vertical direction in a distance approximately equal to a thickness of the at least one blocking portion (b) measured along the vertical direction, and, attached to the transparent element (6), at least one optical structure (5).
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 4, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Susanne Westenhöfer, Bojan Tesanovic
  • Publication number: 20170084663
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 9543354
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: January 10, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20160247976
    Abstract: An optoelectronic module includes a cover substrate including a passive optical element, a base substrate including an optoelectronic device, and a spacer layer joining the cover substrate to the base substrate. The spacer layer includes multiple first spacer elements fixed to a surface of the cover substrate and multiple second spacer elements fixed to a surface of the base substrate, in which each first spacer element is joined to a corresponding second spacer element through an adhesive layer, and in which the cover substrate, base substrate, and spacer layer define an interior region of the module in which the optical element is aligned with the optoelectronic device.
    Type: Application
    Filed: October 1, 2014
    Publication date: August 25, 2016
    Inventors: Hartmut RUDMANN, Susanne WESTENHÖFER, Simon GUBSER
  • Publication number: 20160216777
    Abstract: The sensor (1) for determining an orientation of the sensor in a gravity field comprises a ball (2) and a rolling surface (R) describing a generally concave shape on which the ball can roll inside the sensor. A further surface (F) is arranged opposite said rolling surface, and a light emitter (E), a light detector (D) and another light emitter or detector is provided. A region (R) within which the ball (2) can move is limited by at least the rolling surface (R) and the further surface (F). And the light emitters (E) and detectors (D) are arranged outside the region (R) for emitting light through the rolling surface (R) into said region and detecting light exiting the region (3) through the rolling surface (R) or for emitting light through the further surface (F) into said region (R) and detecting light exiting said region (R) through the further surface (F). Corresponding measuring methods and manufacturing methods are described, too.
    Type: Application
    Filed: July 17, 2014
    Publication date: July 28, 2016
    Inventors: Jens Geiger, Susanne Westenhöfer
  • Publication number: 20160216138
    Abstract: An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another.
    Type: Application
    Filed: September 2, 2013
    Publication date: July 28, 2016
    Inventors: Hartmut Rudmann, Alexander Bietsch, Susanne Westenhöfer, Simon Gubser, Samuele Laffranchini