Patents by Inventor Susheel Deshmukh

Susheel Deshmukh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963872
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a covering feature associated with the spindle for selectively covering at least a portion of a stented prosthetic heart valve tethered to the spindle in a delivery state. In some embodiments, the covering feature includes a tip mounted to the spindle. The tip can include an overhang region for selectively covering a portion of the stented prosthetic heart valve. In other embodiments, the tip can include a tip body and a compressible foam bumper. In yet other embodiments, the covering feature includes an outer sheath arranged to selectively cover the stented prosthetic heart valve. The outer sheath can be elastic and stretchable for recapturing a partially expanded prosthesis, for example by including one or more windows covered by a stretchable covering layer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Brendan Vaughan, Maeve Britton, Martha Barajas-Torres, Susheel Deshmukh, Leonel Mendoza, Siyan Som, Michele Silver, Don Tran, Nathan Brown, Jill Mendelson
  • Publication number: 20240033474
    Abstract: A catheter shaft includes an inner layer defining an innermost circumferential surface of the catheter shaft and defining a lumen of the catheter shaft, and an outer layer defining an outermost circumferential surface of the catheter shaft. The inner layer is formed by a first polymer having a first durometer and a first melting temperature. The outer layer is formed by alternating first and second segments of the first polymer and a second polymer, respectively, that alternate in a circumferential direction. The second polymer has a second durometer softer than the first durometer and a second melting temperature lower than the first melting temperature. Each segment of the alternating first and second segments extend in an axial direction for substantially an entire length of the catheter shaft. A method of forming the catheter shaft via extrusion is also disclosed.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 1, 2024
    Inventor: Susheel DESHMUKH
  • Patent number: 11819629
    Abstract: A catheter shaft includes an inner layer defining an innermost circumferential surface of the catheter shaft and defining a lumen of the catheter shaft, and an outer layer defining an outermost circumferential surface of the catheter shaft. The inner layer is formed by a first polymer having a first durometer and a first melting temperature. The outer layer is formed by alternating first and second segments of the first polymer and a second polymer, respectively, that alternate in a circumferential direction. The second polymer has a second durometer softer than the first durometer and a second melting temperature lower than the first melting temperature. Each segment of the alternating first and second segments extend in an axial direction for substantially an entire length of the catheter shaft. A method of forming the catheter shaft via extrusion is also disclosed.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: November 21, 2023
    Assignee: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventor: Susheel Deshmukh
  • Patent number: 11672656
    Abstract: A system for percutaneous delivery of a stented prosthetic heart valve. The system includes a delivery device with a self-expanding prosthetic heart valve attached thereto and a delivery sheath with an opening on a distal end thereof. The delivery sheath includes a funnel on a proximal end thereof. The delivery device is inserted into the funnel of the delivery sheath. As the delivery device is advanced into the funnel, the expanded heart valve is compressed by the shape of the funnel into a crimped arrangement. The delivery device further advances the heart valve distally within the delivery sheath past the delivery sheath opening. The delivery device is advanced relative to the delivery sheath in transitioning the heart valve from a crimped arrangement to the expanded and deployed arrangement.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 13, 2023
    Inventors: Devin Gosal, Susheel Deshmukh, Philip Haarstad, Joel Racchini, Finn Rinne, Paul Rothstein, Jeffrey Sandstrom
  • Publication number: 20220287835
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 15, 2022
    Applicant: Medtronic, Inc.
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh
  • Patent number: 11399936
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: August 2, 2022
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh
  • Publication number: 20210170141
    Abstract: A catheter shaft includes an inner layer defining an innermost circumferential surface of the catheter shaft and defining a lumen of the catheter shaft, and an outer layer defining an outermost circumferential surface of the catheter shaft. The inner layer is formed by a first polymer having a first durometer and a first melting temperature. The outer layer is formed by alternating first and second segments of the first polymer and a second polymer, respectively, that alternate in a circumferential direction. The second polymer has a second durometer softer than the first durometer and a second melting temperature lower than the first melting temperature. Each segment of the alternating first and second segments extend in an axial direction for substantially an entire length of the catheter shaft. A method of forming the catheter shaft via extrusion is also disclosed.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Inventor: Susheel DESHMUKH
  • Patent number: 10973663
    Abstract: Distal tips for use with delivery catheters are disclosed that are configured to maintain complete engagement between the distal tip and a distal opening of a sheath component of the delivery catheter so as to prevent separation therebetween and/or to prevent fish-mouthing of a distal leading edge of the sheath component during in vivo use. Distal tips so configured realize one or more of the objectives of safer tracking of the delivery catheter through the vasculature, safe crossing of the delivery catheter through structural components of the vasculature and heart, such as through native valves, and safe removal of the delivery catheter post deployment.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: April 13, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Susheel Deshmukh, Siyan Som, Adam Shipley, Matthew Spurchise, Stephen Peter, Shishira Nagesh
  • Publication number: 20200352714
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a covering feature associated with the spindle for selectively covering at least a portion of a stented prosthetic heart valve tethered to the spindle in a delivery state. In some embodiments, the covering feature includes a tip mounted to the spindle. The tip can include an overhang region for selectively covering a portion of the stented prosthetic heart valve. In other embodiments, the tip can include a tip body and a compressible foam bumper. In yet other embodiments, the covering feature includes an outer sheath arranged to selectively cover the stented prosthetic heart valve. The outer sheath can be elastic and stretchable for recapturing a partially expanded prosthesis, for example by including one or more windows covered by a stretchable covering layer.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Applicant: Medtronic Vascular, Inc.
    Inventors: Brendan Vaughan, Maeve Britton, Martha Barajas-Torres, Susheel Deshmukh, Leonel Mendoza, Siyan Som, Michele Silver, Don Tran, Nathan Brown, Jill Mendelson
  • Patent number: 10758350
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a covering feature associated with the spindle for selectively covering at least a portion of a stented prosthetic heart valve tethered to the spindle in a delivery state. In some embodiments, the covering feature includes a tip mounted to the spindle. The tip can include an overhang region for selectively covering a portion of the stented prosthetic heart valve. In other embodiments, the tip can include a tip body and a compressible foam bumper. In yet other embodiments, the covering feature includes an outer sheath arranged to selectively cover the stented prosthetic heart valve. The outer sheath can be elastic and stretchable for recapturing a partially expanded prosthesis, for example by including one or more windows covered by a stretchable covering layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 1, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Brendan Vaughan, Maeve Britton, Martha Barajas-Torres, Susheel Deshmukh, Leonel Mendoza, Siyan Som, Michele Silver, Don Tran, Nathan Brown, Jill Mendelson
  • Publication number: 20200030094
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh
  • Patent number: 10449045
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh
  • Publication number: 20190307561
    Abstract: A system for percutaneous delivery of a stented prosthetic heart valve. The system includes a delivery device with a self-expanding prosthetic heart valve attached thereto and a delivery sheath with an opening on a distal end thereof. The delivery sheath includes a funnel on a proximal end thereof. The delivery device is inserted into the funnel of the delivery sheath. As the delivery device is advanced into the funnel, the expanded heart valve is compressed by the shape of the funnel into a crimped arrangement. The delivery device further advances the heart valve distally within the delivery sheath past the delivery sheath opening. The delivery device is advanced relative to the delivery sheath in transitioning the heart valve from a crimped arrangement to the expanded and deployed arrangement.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Devin GOSAL, Susheel DESHMUKH, Philip HAARSTAD, Joel RACCHINI, Finn RINNE, Paul ROTHSTEIN, Jeffrey SANDSTROM
  • Patent number: 10368986
    Abstract: A system for percutaneous delivery of a stented prosthetic heart valve. The system includes a delivery device with a self-expanding prosthetic heart valve attached thereto and a delivery sheath with an opening on a distal end thereof. The delivery sheath includes a funnel on a proximal end thereof. The delivery device is inserted into the funnel of the delivery sheath. As the delivery device is advanced into the funnel, the expanded heart valve is compressed by the shape of the funnel into a crimped arrangement. The delivery device further advances the heart valve distally within the delivery sheath past the delivery sheath opening. The delivery device is advanced relative to the delivery sheath in transitioning the heart valve from a crimped arrangement to the expanded and deployed arrangement.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: August 6, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Devin Gosal, Susheel Deshmukh, Philip Haarstad, Joel Racchini, Finn Rinne, Paul Rothstein, Jeffrey Sandstrom
  • Publication number: 20170348101
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a covering feature associated with the spindle for selectively covering at least a portion of a stented prosthetic heart valve tethered to the spindle in a delivery state. In some embodiments, the covering feature includes a tip mounted to the spindle. The tip can include an overhang region for selectively covering a portion of the stented prosthetic heart valve. In other embodiments, the tip can include a tip body and a compressible foam bumper. In yet other embodiments, the covering feature includes an outer sheath arranged to selectively cover the stented prosthetic heart valve. The outer sheath can be elastic and stretchable for recapturing a partially expanded prosthesis, for example by including one or more windows covered by a stretchable covering layer.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Brendan Vaughn, Maeve Britton, Martha Barajas-Torres, Susheel Deshmukh, Leonel Mendoza, Siyan Som, Michele Silver, Don Tran, Nathan Brown, Jill Mendelson
  • Publication number: 20160374743
    Abstract: A neuromodulation catheter in accordance with a particular embodiment includes an elongate shaft and a neuromodulation element operably connected to the shaft. The shaft includes a proximal hypotube segment at its proximal end portion and a jacket disposed around at least a portion of an outer surface of the hypotube segment. The jacket may be made at least partially of a polymer blend including polyether block amide and polysiloxane. The neuromodulation element includes a distal hypotube segment and a tubular jacket disposed around at least a portion of an outer surface of the distal hypotube segment. The jacket has reduced-diameter segments spaced apart along its longitudinal axis. The neuromodulation element further includes band electrodes respectively seated in the reduced-diameter segments and respectively forming closed loops extending circumferentially around the jacket.
    Type: Application
    Filed: March 20, 2015
    Publication date: December 29, 2016
    Inventors: Rudy BEASLEY, Don TRAN, William BERTHIAUME, Justin GOSHGARIAN, Charlie CONSIDINE, Susheel DESHMUKH, Rajeshkumar DHAMODHARASAMY, Sina SOM, Sukyoung SHIN, Jaime RIOS
  • Publication number: 20160374804
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 29, 2016
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh
  • Publication number: 20160338862
    Abstract: Distal tips for use with delivery catheters are disclosed that are configured to maintain complete engagement between the distal tip and a distal opening of a sheath component of the delivery catheter so as to prevent separation therebetween and/or to prevent fish-mouthing of a distal leading edge of the sheath component during in vivo use. Distal tips so configured realize one or more of the objectives of safer tracking of the delivery catheter through the vasculature, safe crossing of the delivery catheter through structural components of the vasculature and heart, such as through native valves, and safe removal of the delivery catheter post deployment.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Susheel Deshmukh, Siyan Som, Adam Shipley, Matthew Spurchise, Stephen Peter, Shishira Nagesh
  • Publication number: 20160302921
    Abstract: A system for percutaneous delivery of a stented prosthetic heart valve. The system includes a delivery device with a self-expanding prosthetic heart valve attached thereto and a delivery sheath with an opening on a distal end thereof. The delivery sheath includes a funnel on a proximal end thereof. The delivery device is inserted into the funnel of the delivery sheath. As the delivery device is advanced into the funnel, the expanded heart valve is compressed by the shape of the funnel into a crimped arrangement. The delivery device further advances the heart valve distally within the delivery sheath past the delivery sheath opening. The delivery device is advanced relative to the delivery sheath in transitioning the heart valve from a crimped arrangement to the expanded and deployed arrangement.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Devin Gosal, Susheel Deshmukh, Philip Haarstad, Joel Racchini, Finn Rinne, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 9456899
    Abstract: A system and method for restoring (e.g., replacing) a defective heart valve of a patient. A delivery system is manipulated to percutaneously deliver and implant a stented prosthetic heart valve to a native heart valve. A post-dilatation balloon is percutaneously delivered to the implantation site, and a compliant segment thereof is arranged within a region of the implanted prosthesis. The balloon is inflated such that the compliant segment expands and contacts the prosthesis, expanding a remodeling region of the prosthesis to a remodeled state. With these and related techniques, remodeling of an implanted, stented prosthetic heart valve to better match the native valve shape is possible, providing many benefits such as reducing the risk of paravalvular leaks.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: October 4, 2016
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, Mike Krivoruchko, Susheel Deshmukh