Patents by Inventor Susheel Deshmukh

Susheel Deshmukh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110251679
    Abstract: A device for percutaneously delivering a stented prosthetic heart valve. The device includes an inner shaft, a delivery sheath, stability tube, and a handle. The delivery sheath is slidably disposed over the inner shaft, and includes a capsule compressively containing the prosthesis over the inner shaft. The stability tube is coaxially received over the delivery sheath, and includes a distal region. A circumferential rigidity of the capsule is greater than a circumferential rigidity of the distal region. In transitioning from a delivery state to a deployed state, the capsule is withdrawn from the prosthetic heart valve and at least partially into the distal region to permit the prosthesis to self-deploy. The capsule forces the distal region to stretch and expand in diameter.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: Medtronic, Inc.
    Inventors: Nathan Wiemeyer, Robert Murray, III, Siyan Som, Susheel Deshmukh
  • Publication number: 20110251680
    Abstract: A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Applicant: Medtronic, Inc.
    Inventors: Don Tran, Nathan Wiemeyer, Susheel Deshmukh, Leonal Mendoza, Matthew Rust
  • Publication number: 20110098804
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Application
    Filed: September 21, 2010
    Publication date: April 28, 2011
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Publication number: 20070142772
    Abstract: A dual-layer dilatation balloon includes an inner layer that includes a polymer selected from the group consisting of a polyester, polyether, polyamide and copolymers thereof, and an outer layer that includes a polyamide. The dual-layer balloon optionally further includes a stent disposed on the balloon. The stent is optionally a drug-eluting stent. A process for forming a dual-layer dilatation balloon includes forming a dual-layer extrudate having an outer layer that includes a polyamide and an inner layer that includes a polymer selected from the group consisting of a polyester, polyether, polyamide and copolymers thereof. The process also includes forming the dual-layer balloon from the dual-layer extrudate in a balloon forming machine, wherein the balloon has a hoop strength of about 10,000 to about 60,000 p.s.i.
    Type: Application
    Filed: December 11, 2006
    Publication date: June 21, 2007
    Applicant: Medtronic Vascular, Inc.
    Inventors: Susheel Deshmukh, Raymond Godaire
  • Publication number: 20060134357
    Abstract: A dilatation balloon is disclosed comprising about 65-95 wt % polyamide blended with a second polymer selected from the group consisting of a polyurethane, a rubber and an ionomer, wherein the balloon has hoop strength of about 20,000-40,000 p.s.i. Also disclosed, is a process for forming the dilatation balloon. The process includes contacting the polyamide polymer with a composition comprising a second polymer to form a polymer blend, extruding the polymer blend to form a polymer extrudate, and forming the balloon from the extrudate in a balloon forming machine.
    Type: Application
    Filed: December 16, 2004
    Publication date: June 22, 2006
    Applicant: Medtronic Vascular, Inc.
    Inventors: Raymond Godaire, Susheel Deshmukh