Patents by Inventor Susumu Kinoshita

Susumu Kinoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8463135
    Abstract: A relay apparatus including: a first interface 11 that branches an optical signal that is input in a first direction from one side of the optical transmission line, and directs the optical signal to a first path and a second path, the first path being a processing path of an optical signal having a first transmission speed, the second path being a processing path of an optical signal having a second transmission speed that is different from the first transmission speed; a processing section 12 that executes processing on an optical signal propagating through each of the paths in accordance with a corresponding transmission speed; and a second interface 13 that binds the first path and the second path of the optical signal on which the processing is executed by the processing section, by means of wavelength multiplexing and directs to the other end of the optical transmission line.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Yutaka Kai, George Ishikawa, Susumu Kinoshita
  • Patent number: 8427739
    Abstract: An optical amplifier includes an input port, an output port, an amplification medium, a light source, a monitor, and a controller. The amplification medium with which doped an rare-earth element for optical amplification is allocated on an optical path between the input port and the output port. The light source supplies the amplification medium with an excitation light. The monitor monitors a total power of an optical signal of each wavelength according to a monitor period which is longer than a transient response time of the amplification medium. The controller controls the light source so that a power of the excitation light is constant when a monitor value of the monitor is equal to or smaller than a predetermined threshold value and controls the light source so that an optical gain in the amplification medium is constant when the monitor value is larger than the predetermined threshold value.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Susumu Kinoshita
  • Publication number: 20130038925
    Abstract: An optical amplifying device includes an optical system including a first end and a second end, the optical system configured to receive signal light through the first end, to lead the received signal light to an optical amplifying medium, and to output the signal light amplified by the optical amplifying medium through the second end, the optical system including a first optical isolator and a second optical isolator which are arranged on respective sides of the optical amplifying medium, wherein with respect to a direction in which the signal light propagates, each of the first optical isolator and the second optical isolator is capable of allowing light propagating in the same direction to pass therethrough and blocking light propagating in the opposite direction, and the first optical isolator and the second optical isolator have different center isolation wavelengths for the light propagating in the opposite direction.
    Type: Application
    Filed: June 14, 2012
    Publication date: February 14, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Goji Nakagawa, Susumu Kinoshita
  • Publication number: 20130028599
    Abstract: There is provided a repeater to relay an optical signal transmitted/received between an optical line terminal (OLT) and at least one optical network unit (ONU), the repeater including: a first port configured to receive an optical signal input from the at least one ONU; a converter circuit configured to convert an optical signal of a first transmission rate into an optical signal of a second transmission rate higher than the first transmission rate, the optical signal of the first transmission rate to be converted being included in optical signals received at the first port; and a second port configured to output the optical signal converted by the converter circuit to the OLT.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 31, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Kyosuke SONE, George Ishikawa, Susumu Kinoshita
  • Patent number: 8320040
    Abstract: A multi-wavelength light amplifier includes a first-stage light amplifier which has a first light amplifying optical fiber amplifying a light input, a second stage light amplifier which has a second light amplifying optical fiber amplifying a first light output from the first-stage light amplifier, and an optical system which maintains a second light output of the second-stage light amplifier at a constant power level. The first-stage and second-stage light amplifiers have different gain vs wavelength characteristics so that the multi-wavelength light amplifier has no wavelength-dependence of a gain thereof.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: November 27, 2012
    Assignee: Fujitsu Limited
    Inventors: Yasushi Sugaya, Miki Takeda, Susumu Kinoshita, Terumi Chikama
  • Publication number: 20120280500
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having blades 42, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, a discharge power supply 65 applying a voltage between the electrodes of the airflow generation device 60, and a control unit 110 controlling the discharge power supply 65. The control unit 110 controls the voltage to perform pulse modulation so that the value of a relational expression fC/U is 0.1 or larger and 9 or smaller where f is a pulse modulation frequency of the voltage, C is a chord length of the blades 42, and U is a relative velocity combining a peripheral velocity of the blades 42 and a wind velocity, so as to generate plasma induced flow.
    Type: Application
    Filed: March 13, 2012
    Publication date: November 8, 2012
    Inventors: Motofumi TANAKA, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda
  • Publication number: 20120280501
    Abstract: A wind power generation system 10 of an embodiment includes a rotor 40 having a hub 41 and blades 42, a nacelle 31 pivotally supporting the rotor 40, a tower 30 supporting the nacelle 31, an airflow generation device 60 provided in a leading edge of each of the blades 42 and having a first electrode 61 and a second electrode 62 which are separated via a dielectric, and a discharge power supply 65 capable of applying a voltage between the electrodes of the airflow generation device 60. Further, the system includes a measurement device detecting information related to at least one of output in the wind power generation system 10, torque in the rotor 40 and a rotation speed of the blades 42, and a control unit 110 controlling the discharge power supply 65 based on an output from the measurement device.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Kunihiko Wada, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Yutaka Ishiwata, Susumu Kinoshita, Tamon Ozaki, Sueyoshi Mizuno, Shinichi Noda, Toshiki Osako, Toshimasa Yamada
  • Publication number: 20120257272
    Abstract: An optical amplification apparatus includes a front-stage semiconductor optical amplifier which amplifies an input light and a rear-stage semiconductor optical amplifier which amplifies an amplified light outputted from the front-stage semiconductor optical amplifier. The front-stage semiconductor optical amplifier exercises auto level control of an output light by exercising variable control of driving current which flows according to applied voltage higher than light emitting threshold voltage of an internal optical amplification element. The rear-stage semiconductor optical amplifier performs gate switching of a transmitted light by exercising switching control of driving current. By doing so, distortion of a waveform is controlled and optical communication quality can be improved.
    Type: Application
    Filed: March 12, 2012
    Publication date: October 11, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Setsuo YOSHIDA, Susumu Kinoshita, George Ishikawa, Goji Nakagawa, Yutaka Kai, Kyosuke Sone, Keisuke Harada
  • Publication number: 20120213528
    Abstract: An optical receiving device includes multiple input ports to which light is input; multiple amplifiers that are arrayed and provided corresponding to the input ports, respectively, each of the amplifiers amplifying and outputting light input from a corresponding input port among of the input ports; a photo diode that converts light into an electrical signal; and a lens that inputs to the photo diode light output from the amplifiers.
    Type: Application
    Filed: December 13, 2011
    Publication date: August 23, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Goji NAKAGAWA, Susumu Kinoshita
  • Patent number: 8249453
    Abstract: An optical communicating apparatus that is connected to another optical communicating apparatus by a two-core optical transmission path includes: a one-core optical transmission path that passes an optical signal transmitted from an optical transmitter/receiver performing one-core bilateral communication and an optical signal transmitted to the optical transmitter/receiver in an opposite direction; a transmitting unit that transmits the optical signal transmitted from the optical transmitter/receiver through the one-core optical transmission path, to the other optical communicating apparatus through a first core of the two-core optical transmission path; and a receiving unit that receives the optical signal transmitted from the other communicating apparatus through a second core of the two-core optical transmission path, and passes the received optical signal to the one-core optical transmission path.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: August 21, 2012
    Assignee: Fujitsu Limited
    Inventors: Yutaka Takita, Susumu Kinoshita
  • Patent number: 8238753
    Abstract: An optical line terminal receives an optical signal transmitted by time division multiple access from plural optical network units among which are an optical network unit performing communications at a first bit rate and an optical network unit performing communications at a second bit rate. The optical line terminal includes a branching unit, a first receiving unit, and a second receiving unit. The branching unit branches the optical signal into branches, at an asymmetrical branching ratio. The first receiving unit receives a branch having the first bit rate, among the branches of a greater branched proportion. The second receiving unit receives a branch having the second bit rate, among the branches of a lesser branched proportion.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 7, 2012
    Assignee: Fujitsu Limited
    Inventors: Hiroshi Hamano, Susumu Kinoshita
  • Patent number: 8200088
    Abstract: A communication unit inhibits delay and jitter during network communication, improving the communication quality. For this purpose, the communication unit includes: a first terminator that terminates a communication channel in the first optical communication scheme established between the communication unit and another communication unit; a second terminator that terminates a signal in the second optical communication scheme; and a path setting switch that switches between a first signal path setting and a second signal path setting.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Susumu Kinoshita
  • Publication number: 20110286085
    Abstract: An optical amplifier includes an input port, an output port, an amplification medium, a light source, a monitor, and a controller. The amplification medium with which doped an rare-earth element for optical amplification is allocated on an optical path between the input port and the output port. The light source supplies the amplification medium with an excitation light. The monitor monitors a total power of an optical signal of each wavelength according to a monitor period which is longer than a transient response time of the amplification medium. The controller controls the light source so that a power of the excitation light is constant when a monitor value of the monitor is equal to or smaller than a predetermined threshold value and controls the light source so that an optical gain in the amplification medium is constant when the monitor value is larger than the predetermined threshold value.
    Type: Application
    Filed: April 18, 2011
    Publication date: November 24, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kyosuke SONE, Susumu Kinoshita
  • Publication number: 20110262140
    Abstract: A multi-wavelength light amplifier includes a first-stage light amplifier which has a first light amplifying optical fiber amplifying a light input, a second stage light amplifier which has a second light amplifying optical fiber amplifying a first light output from the first-stage light amplifier, and an optical system which maintains a second light output of the second-stage light amplifier at a constant power level. The first-stage and second-stage light amplifiers have different gain vs wavelength characteristics so that the multi-wavelength light amplifier has no wavelength-dependence of a gain thereof.
    Type: Application
    Filed: July 6, 2011
    Publication date: October 27, 2011
    Applicant: Fujitsu Limited
    Inventors: Yasushi SUGAYA, Miki Takeda, Susumu Kinoshita, Terumi Chikama
  • Publication number: 20110205620
    Abstract: An optical amplifying apparatus which includes an optical amplifier, an optical attenuator and a controller. The optical amplifier amplifies a light signal having a variable number of channels. The optical attenuator passes the amplified light signal and has a variable light transmissivity. Prior to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal prior to the varying the number of channels. While the number of channels in the light signal is being varied, the controller maintains the light transmissivity of the optical attenuator to be constant.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Applicant: Fujitsu Limited
    Inventors: Yasushi SUGAYA, Susumu Kinoshita
  • Patent number: 8004752
    Abstract: A multi-wavelength light amplifier includes a first-stage light amplifier which has a first light amplifying optical fiber amplifying a light input, a second stage light amplifier which has a second light amplifying optical fiber amplifying a first light output from the first-stage light amplifier, and an optical system which maintains a second light output of the second-stage light amplifier at a constant power level. The first-stage and second-stage light amplifiers have different gain vs wavelength characteristics so that the multi-wavelength light amplifier has no wavelength-dependence of a gain thereof.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: August 23, 2011
    Assignee: Fujitsu Limited
    Inventors: Yasushi Sugaya, Miki Takeda, Susumu Kinoshita, Terumi Chikama
  • Publication number: 20110164309
    Abstract: An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by ?, the controller controls a level of the light received by the second optical amplifier to change by approximately ??. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 7, 2011
    Applicant: Fujitsu Limited
    Inventors: Shinya Inagaki, Norifumi Shukunami, Susumu Kinoshita, Hiroyuki Itou, Taiki Kobayashi
  • Patent number: 7969649
    Abstract: An optical amplifying apparatus which includes an optical amplifier, an optical attenuator and a controller. The optical amplifier amplifies a light signal having a variable number of channels. The optical attenuator passes the amplified light signal and has a variable light transmissivity. Prior to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal prior to the varying the number of channels. While the number of channels in the light signal is being varied, the controller maintains the light transmissivity of the optical attenuator to be constant.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Limited
    Inventors: Yasushi Sugaya, Susumu Kinoshita
  • Patent number: 7969648
    Abstract: An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by ?, the controller controls a level of the light received by the second optical amplifier to change by approximately ??. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Limited
    Inventors: Shinya Inagaki, Norifumi Shukunami, Susumu Kinoshita, Hiroyuki Itou, Taiki Kobayashi
  • Patent number: 7970278
    Abstract: A flexible open ring optical network includes a plurality of nodes connected by twin or other suitable optical rings. Each node is operable to passively add and passively drop traffic from the rings. The nodes may include a transport element for each ring. The transport elements include an optical splitter element and an optical combiner element. The optical splitter element is operable to passively combine an add signal including local add traffic and a first transport signal including ingress traffic from a coupled optical ring to generate a second transport signal including egress traffic for transmission on the coupled optical ring. The optical combiner element is coupled to the optical splitter element and is operable to passively split a third transport signal including the ingress traffic to generate a drop signal including local drop traffic and a fourth transport signal including the ingress traffic.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Satoru Odate, Cechan Tian