Patents by Inventor Susumu Kinoshita

Susumu Kinoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7283739
    Abstract: An optical network includes an optical ring and at least three subnets. Each subnet includes a plurality of add/drop nodes coupled to the optical ring. The add/drop nodes are operable to passively add a first traffic stream in a first direction on the optical ring and a second traffic stream in a second direction on the optical ring. The first traffic stream comprises different content than the second traffic stream, and the first traffic stream and the second traffic stream are transmitted on the same wavelength. The network also includes a plurality of gateway nodes. The gateway nodes are each coupled to the optical ring at a boundary between neighboring subnets and are operable to selectively pass and terminate wavelengths between subnets to allow wavelength reuse in the subnets.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Ashwin Anil Gumaste
  • Patent number: 7283750
    Abstract: A method and a system for setting a tunable filter in an optical network are provided. In one embodiment, a method for setting a tunable filter in an optical network includes rejecting a reference wavelength using a fixed filter from an input optical signal to generate a passthrough optical signal. A tunable filter is adjusted to maintain the tunable filter at the reference wavelength. The tunable filter is adjusted to a selected wavelength based on a determination of the reference wavelength.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventors: Cechan Tian, Susumu Kinoshita
  • Patent number: 7283740
    Abstract: An optical network includes a plurality of subnets. The subnets each include a plurality of add/drop nodes coupled to the optical ring and operable to passively add and drop traffic to and from the optical ring. The network further includes a plurality of gateway nodes. The gateway nodes are each coupled to the optical ring at a boundary between neighboring subnets and operable to selectively pass and terminate wavelengths between subnets to allow wavelength reuse in the subnets and to provide protection switching.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: October 16, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Ashwin Anil Gumaste
  • Publication number: 20070223371
    Abstract: A flexible open ring optical network includes a plurality of nodes connected by twin or other suitable optical rings. Each node is operable to passively add and passively drop traffic from the rings. The nodes may include a transport element for each ring. The transport elements include an optical splitter element and an optical combiner element. The optical splitter element is operable to passively combine an add signal including local add traffic and a first transport signal including ingress traffic from a coupled optical ring to generate a second transport signal including egress traffic for transmission on the coupled optical ring. The optical combiner element is coupled to the optical splitter element and is operable to passively split a third transport signal including the ingress traffic to generate a drop signal including local drop traffic and a fourth transport signal including the ingress traffic.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 27, 2007
    Applicant: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Satoru Odate, Cechan Tian
  • Publication number: 20070217790
    Abstract: A device for directing one or more optical channels includes one or more micromirror elements. A micromirror element has a mirror and a mirror controller. The mirror is operable to reflect light at a first interaction area to yield a first passband for an optical channel, and to reflect light at a second interaction area to yield a second passband for the optical channel. The mirror controller operates to position the mirror at a first position at which light interacts with the first interaction area to yield the first passband, and to position the mirror at a second position at which light interacts with the second interaction area to yield the second passband.
    Type: Application
    Filed: May 18, 2007
    Publication date: September 20, 2007
    Applicant: Fujitsu Limited
    Inventors: Cechan Tian, Susumu Kinoshita
  • Publication number: 20070206493
    Abstract: A flexible open ring optical network includes a plurality of nodes connected by twin or other suitable optical rings. Each node is operable to passively add and passively drop traffic from the rings. The nodes may include a transport element for each ring. The transport elements include an optical splitter element and an optical combiner element. The optical splitter element is operable to passively combine an add signal including local add traffic and a first transport signal including ingress traffic from a coupled optical ring to generate a second transport signal including egress traffic for transmission on the coupled optical ring. The optical combiner element is coupled to the optical splitter element and is operable to passively split a third transport signal including the ingress traffic to generate a drop signal including local drop traffic and a fourth transport signal including the ingress traffic.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Applicant: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Satoru Odate, Cechan Tian
  • Patent number: 7266294
    Abstract: An optical cross-connect includes multiple input ports that each receives an optical input signal and multiple output ports that each output an optical output signal. The optical cross-connect also includes a distributing amplifier associated with each input port that generates multiple copies of the input signal received at the associated input port and multiple filter units that receive one or more of the copies and forward traffic in selected channels of particular copies. In addition, the optical cross-connect includes a combining amplifier associated with each output port that receives the traffic forwarded by one or more of the filter units and combines the received traffic into an output signal. Moreover, the optical cross-connect includes at least one upgrade input port and at least one upgrade output port expanding the capacity of the optical cross-connect, as well as associated upgrade distributing and combining amplifiers and upgrade filter units.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: September 4, 2007
    Assignee: Fujitsu Limited
    Inventors: Yasuhiko Aoki, Susumu Kinoshita, Koji Takeguchi
  • Patent number: 7254292
    Abstract: A device for directing one or more optical channels includes one or more micromirror elements. A micromirror element has a mirror and a mirror controller. The mirror is operable to reflect light at a first interaction area to yield a first passband for an optical channel, and to reflect light at a second interaction area to yield a second passband for the optical channel. The mirror controller operates to position the mirror at a first position at which light interacts with the first interaction area to yield the first passband, and to position the mirror at a second position at which light interacts with the second interaction area to yield the second passband.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 7, 2007
    Assignee: Fujitsu Limited
    Inventors: Cechan Tian, Susumu Kinoshita
  • Publication number: 20070171517
    Abstract: The invention provides an optical fiber amplifier which assures stable operation of a pump light source and efficiently makes use of residual pump power to achieve improvement in conversion efficiency. The optical fiber amplifier includes a rare earth doped fiber. Pump light from a pump light source is introduced into one end of the rare earth doped fiber by way of a first optical coupler, and residual pump light originating from the pump light and arriving at the other end of the rare earth doped fiber is applied to the other rare earth doped fiber amplifier or the loss compensation of a dispersion compensating fiber by Raman amplification.
    Type: Application
    Filed: March 27, 2007
    Publication date: July 26, 2007
    Inventor: Susumu Kinoshita
  • Publication number: 20070165299
    Abstract: A multi-wavelength light amplifier includes a first-stage light amplifier which has a first light amplifying optical fiber amplifying a light input, a second stage light amplifier which has a second light amplifying optical fiber amplifying a first light output from the first-stage light amplifier, and an optical system which maintains a second light output of the second-stage light amplifier at a constant power level.
    Type: Application
    Filed: March 29, 2007
    Publication date: July 19, 2007
    Applicant: Fujitsu Limited
    Inventors: Yasushi SUGAYA, Miki TAKEDA, Susumu KINOSHITA, Terumi CHIKAMA
  • Publication number: 20070140700
    Abstract: A method for compensating for optical dispersion in an optical signal includes receiving an optical signal comprising a plurality of channels. The information being communicated in a first set of channels is modulated using a first modulation technique, and the information being communicated in a second set of channels is modulated using a second modulation technique. The method also includes compensating for optical dispersion in the optical signal such that dispersion compensation for the first set of channels is complete and such that dispersion compensation for the second set of channels is incomplete. In addition, the method includes splitting the optical signal into a first copy and a second copy, terminating the second set of channels in the first copy, performing additional dispersion compensation on the second copy such that dispersion compensation for the second set of channels is complete, and terminating the first set of channels in the second copy.
    Type: Application
    Filed: December 19, 2005
    Publication date: June 21, 2007
    Inventors: Olga Vassilieva, Susumu Kinoshita
  • Patent number: 7231148
    Abstract: A flexible open ring optical network includes a plurality of nodes connected by twin or other suitable optical rings. Each node is operable to passively add and passively drop traffic from the rings. The nodes may include a transport element for each ring. The transport elements include an optical splitter element and an optical combiner element. The optical splitter element is operable to passively combine an add signal including local add traffic and a first transport signal including ingress traffic from a coupled optical ring to generate a second transport signal including egress traffic for transmission on the coupled optical ring. The optical combiner element is coupled to the optical splitter element and is operable to passively split a third transport signal including the ingress traffic to generate a drop signal including local drop traffic and a fourth transport signal including the ingress traffic.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: June 12, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Koji Takeguchi, Satoru Odate, Cechan Tian
  • Patent number: 7227681
    Abstract: An optical amplifier which amplifies a wavelength division multiplexed (WDM) optical signal having a variable number of channels associated with different wavelengths and outputs the amplified WDM optical signal. The optical amplifier includes (a) an optical attenuator which controls a level of the amplified WDM optical signal, and (b) a controller which controls the WDM optical signal to be amplified with an approximately constant gain.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: June 5, 2007
    Assignee: Fujitsu Limited
    Inventors: Yasushi Sugaya, Susumu Kinoshita
  • Patent number: 7224517
    Abstract: A multi-wavelength light amplifier includes a first-stage light amplifier which has a first light amplifying optical fiber amplifying a light input, a second-stage light amplifier which has a second light amplifying optical fiber amplifying a first light output from the first-stage light amplifier, and an optical system which maintains a second light output of the second-stage light amplifier at a constant power level. The first-stage and second-stage light amplifiers have different gain vs wavelength characteristics so that the multi-wavelength light amplifier has no wavelength-dependence of a gain thereof.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: May 29, 2007
    Assignee: Fujitsu Limited
    Inventors: Yasushi Sugaya, Miki Takeda, Susumu Kinoshita, Terumi Chikama
  • Patent number: 7200332
    Abstract: A system and method for assigning a traffic channel to a wavelength in a multi-ring optical network having bifurcated work and protect wavelengths includes determining a transport direction for the traffic channel in a ring of the multi-ring optical network. An inter/intra ring type of the traffic channel is determined. The traffic channel is assigned to a wavelength in the ring based on the transport direction and the inter/intra ring type of the traffic channel. In a particular embodiment, the traffic channel may be assigned to one of an odd and even wavelength based on the transport direction and one of a high and low wavelength based on the inter/intra ring type.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 3, 2007
    Assignee: Fujitsu Limited
    Inventors: Ashwin Anil Gumaste, Susumu Kinoshita, Koji Takeguchi
  • Patent number: 7184663
    Abstract: An optical network includes an optical ring and a plurality of add/drop nodes coupled to the optical ring. Each of the add/drop nodes is operable to passively add and drop one or more traffic streams to and from the optical ring, and each traffic stream comprises a channel. A hub node also coupled to the optical ring is operable to selectively pass and terminate individual traffic streams.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: February 27, 2007
    Assignee: Fujitsu Limited
    Inventors: Susumu Kinoshita, Ashwin Anil Gumaste, Koji Takeguchi
  • Publication number: 20060285198
    Abstract: The present invention aims at providing a method for controlling wavelength characteristics of optical transmission powers by Raman amplification, in which the wavelength characteristics of optical transmission powers are automatically compensated without giving any losses to channel lights to thereby improve transmission characteristics, and an apparatus adopting the same. To this end, the method for controlling wavelength characteristics of optical transmission powers by Raman amplification according to present invention supplies Raman pump light to an optical transmission path (Raman amplifying medium); compensates the wavelength characteristics of optical transmission powers caused by transmission of WDM signal light through the optical transmission path, by gain wavelength characteristics of generated Raman amplification; and monitors the wavelength characteristics of optical transmission powers after Raman amplification to thereby control the gain wavelength characteristics of Raman amplification.
    Type: Application
    Filed: August 25, 2006
    Publication date: December 21, 2006
    Applicant: FUJITSU LIMITED
    Inventors: Miki Onaka, Susumu Kinoshita
  • Publication number: 20060250682
    Abstract: Reducing polarization dependence of a dispersion variation monitor includes receiving an optical signal. The optical signal is split into a first polarized signal having first photons and a second polarized signal having second photons. The first photons are received at a first material of a first detector, where the first material is operable to produce a reaction in response to the arrival of a predetermined number of photons. The second photons are received at a second material of a second detector, where the second material is substantially similar to the first material. A first current produced by the first material in response to receiving the first photons and a second current produced by the second material in response to receiving the second photons are monitored. Whether there is wavelength dispersion variation among the plurality of components is established in accordance with the first current and the second current.
    Type: Application
    Filed: March 18, 2005
    Publication date: November 9, 2006
    Inventors: Cechan Tian, Susumu Kinoshita
  • Publication number: 20060245755
    Abstract: A method for transmitting traffic in an optical network includes establishing a light-trail in the optical network between a number of nodes. The light-trail couples the nodes and is associated with one of a number of wavelengths in the network. The method also includes, at one or more of the nodes, receiving traffic from one or more client devices of the node to be communicated over the light-trail to a destination node and determining one or more service types associated with the received traffic. Furthermore, the method includes determining traffic shaping information for each service type based on information relating to the arrival of traffic associated with the service type at the node. The traffic shaping information indicating to the destination node the rate at which the traffic associated with each service type should be communicated from the destination node to one or more client devices of the destination node.
    Type: Application
    Filed: April 29, 2005
    Publication date: November 2, 2006
    Inventors: Ashwin Gumaste, Susumu Kinoshita
  • Publication number: 20060228112
    Abstract: An optical network is provided that carries optical traffic in multiplexed wavelengths between a number of nodes. The network includes at least one light-trail associated with one of the wavelengths and established between a subset of the nodes in the network. The network also includes an out-of-band control channel that is associated with a different wavelength than the light-trail. The control channel is used to communicate control messages to establish the light-trail and to allocate use of the light-trail by the subset of nodes. Each of the subset of nodes comprises a burstponder operable to receive data traffic from one or more client devices of the associated node to be communicated over the light-trail and to buffer the received data traffic and assemble the data traffic into an optical payload.
    Type: Application
    Filed: March 30, 2005
    Publication date: October 12, 2006
    Inventors: Paparao Palacharla, Ashwin Gumaste, Susumu Kinoshita