Patents by Inventor Susumu Noda

Susumu Noda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8619830
    Abstract: A photonic crystal surface emission laser includes an active layer, and a photonic crystal layer made of a plate-shaped slab provided with modified refractive index area having a refractive index different from that of the slab, the modified refractive index areas being arranged on each of the lattice points of a first rhombic-like lattice and a second rhombic-like lattice in which both diagonals are mutually parallel and only one diagonal is of a different length, wherein ax1, ax2, ay, and n satisfy the following inequality: ? 1 a x ? ? 1 - 1 a x ? ? 2 ? ( 1 a x ? ? 1 + 1 a x ? ? 2 ) 2 + ( 2 a y ) 2 ? 1 n .
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 31, 2013
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Susumu Noda, Seita Iwahashi, Toshiyuki Nobuoka, Takui Sakaguchi, Eiji Miyai, Wataru Kunishi, Dai Ohnishi, Kazuya Nagase, Yoshikatsu Miura
  • Publication number: 20130243026
    Abstract: Provided is a two-dimensional photonic crystal surface emitting laser having an active layer for generating light of a predetermined wavelength range by an injection of electric current and a two-dimensional photonic crystal layer provided on one side of the active layer, the layer having a plate-shaped base member in which modified refractive index areas whose refractive index differs from that of the base member are arranged.
    Type: Application
    Filed: February 27, 2013
    Publication date: September 19, 2013
    Applicants: ROHM CO., LTD., KYOTO UNIVERSITY
    Inventors: Susumu NODA, Seita IWAHASHI, Toshiyuki NOBUOKA
  • Publication number: 20130121358
    Abstract: A semiconductor surface light-emitting element of this invention is provided with a photonic crystal layer 6 obtained by periodically forming a plurality of holes H in a basic layer 6A comprised of a first compound semiconductor of the zinc blende structure and growing embedded regions 6B comprised of a second compound semiconductor of the zinc blende structure, in the holes H, and an active layer 4 to supply light to the photonic crystal layer 6, in which a principal surface of the basic layer 6A is a (001) plane and in which side faces of each hole H have at least three different {100} facets.
    Type: Application
    Filed: June 21, 2011
    Publication date: May 16, 2013
    Applicants: KYOTO UNIVERSITY, HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi Hirose, Shinichi Furuta, Akiyoshi Watanabe, Takahiro Sugiyama, Kousuke Shibata, Yoshitaka Kurosaka, Susumu Noda
  • Publication number: 20130105927
    Abstract: A photoelectric conversion element (1) of the present invention includes: a photoelectric conversion layer (2); and a photonic crystal provided inside the photoelectric conversion layer (2) to provide a photonic band gap, the photonic crystal being designed such that nanorods (30) whose refraction index is smaller than that of a medium of the photoelectric conversion layer (2) are provided periodically inside the photoelectric conversion layer (2), and there are provided defects (31) to provide a defect level in the photonic band gap, when a wavelength of a resonance peak corresponding to the defect level is ?, the nanorods (30) are provided two-dimensionally with a pitch of not less than ?/7 and not more than ?/2, and a coefficient ?V indicative of strength of coupling between the photonic crystal and the outside is substantially equal to a coefficient ? of absorption of light by the photoelectric conversion layer (2).
    Type: Application
    Filed: December 22, 2010
    Publication date: May 2, 2013
    Applicants: KYOTO UNIVERSITY, SHARP KABUSHIKI KAISHA
    Inventors: Hiroaki Shigeta, Yuhji Yashiro, Yuhsuke Tsuda, Susumu Noda, Masayuki Fujita, Yoshinori Tanaka
  • Patent number: 8379686
    Abstract: A two-dimensional photonic crystal surface-emitting laser light source producing a beam without side lobes is provided. A window-shaped electrode having a central window devoid of the electrode material is provided on a device substrate. A mount surface electrode smaller than the electrode including the window is provided on a mount surface. The distance between the substrate and the active layer is larger than that between the mount surface and the active layer. When a voltage is applied, electric charges are injected into the active layer and emission is obtained. Light having a specific wavelength is amplified by a two-dimensional photonic crystal and extracted through the window without side lobes due to interference. The positioning of the active layer close to the mount surface significantly enhances the heat-radiating effect.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: February 19, 2013
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Dai Ohnishi, Wataru Kunishi, Eiji Miyai, Susumu Noda
  • Publication number: 20130039375
    Abstract: A photonic crystal surface emission laser includes an active layer, and a photonic crystal layer made of a plate-shaped slab provided with modified refractive index area having a refractive index different from that of the slab, the modified refractive index areas being arranged on each of the lattice points of a first rhombic-like lattice and a second rhombic-like lattice in which both diagonals are mutually parallel and only one diagonal is of a different length, wherein ax1, ax2, ay, and n satisfy the following inequality: ? 1 a x ? ? 1 - 1 a x ? ? 2 ? ( 1 a x ? ? 1 + 1 a x ? ? 2 ) 2 + ( 2 a y ) 2 ? 1 n .
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Applicants: ROHM CO., LTD., KYOTO UNIVERSITY
    Inventors: Susumu NODA, Seita IWAHASHI, Toshiyuki NOBUOKA, Takui SAKAGUCHI, Eiji MIYAI, Wataru KUNISHI, Dai OHNISHI, Kazuya NAGASE, Yoshikatsu MIURA
  • Patent number: 8358895
    Abstract: Holes 12 are created in a slab-shaped body 11. On the first surface 131 of the body 11, the holes 12 are arranged at the lattice points of a triangular lattice 141. On the second surface 132, they are arranged at the lattice points 122 located at positions corresponding to the gravity center of a triangular lattice 141. Three air columns 12A obliquely extend from each lattice point 121 to the nearest three lattice points 122. Similarly, three air columns 12A obliquely extend from each lattice point 122 to the nearest three lattice points 121. In this construction, a periodic structural unit 16 consisting of three holes is created within the body 11 and this unit has a C3v-symmetrical shape at any section 14 parallel to the body 11. Due to this symmetry and the obliquely extending form of the air column 12A, a complete PBG with a large width is obtained. In one embodiment, a broad complete PBG whose width equals 15% of its middle value is obtained.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: January 22, 2013
    Assignees: Kyoto University, Alps Electric Co., Ltd.
    Inventors: Susumu Noda, Takashi Asano, Hitoshi Kitagawa
  • Publication number: 20130003768
    Abstract: A photonic crystal laser capable of producing a radially-polarized halo-shaped laser beam having a smaller width than conventional beams includes: an active layer; a ring-shaped photonic crystal including a plate-shaped base body on one side of the active layer, the base body having a number of modified refractive index areas of the same shape, the modified refractive index areas having a refractive index different from the base body and periodically arranged in the circumferential direction of a ring, and each of the modified refractive index areas being asymmetrically shaped with respect to an axis extending through the center of the modified refractive index area in the radial direction of the ring; a first and second electrode facing each other across the active layer and the ring-shaped photonic crystal; and a window provided in the second electrode capable of allowing passage of a laser light generated from the ring-shaped photonic crystal.
    Type: Application
    Filed: March 1, 2011
    Publication date: January 3, 2013
    Applicant: KYOTO UNIVERSITY
    Inventors: Susumu Noda, Kyoko Kitamura, Yoshitaka Kurosaka, Kyosuke Sakai
  • Publication number: 20120279553
    Abstract: A solar cell (1) of the present invention includes a photoelectric conversion layer (2) and a photonic crystal provided inside the photoelectric conversion layer (2) in order to have a photonic band gap. The photonic crystal has defects (31) in order to provide a defect level in the photonic band gap. QV which is a Q value representing a magnitude of a resonance effect yielded by coupling between the photonic crystal and an outside is substantially equal to Q? which is a Q value representing a magnitude of a resonance effect yielded by a medium of the photoelectric conversion layer (2).
    Type: Application
    Filed: December 22, 2010
    Publication date: November 8, 2012
    Applicants: Kyoto University, Sharp Kabushiki Kaisha
    Inventors: Hiroaki Shigeta, Yuhji Yashiro, Yuhsuke Tsuda, Shintaro Miyanishi, Susumu Noda, Masayuki Fujita, Yoshinori Tanaka
  • Publication number: 20120273911
    Abstract: A photoelectric transducer (10) including: a semiconductor layer (13); and a photonic crystal (21) formed inside the semiconductor layer, the photonic crystal being formed by providing nanorods (19) inside the semiconductor layer, each of the nanorods having a refractive index lower than that of a medium of the semiconductor layer, the nanorods being provided two-dimensionally and periodically at a pitch of not less than ?/4 nor more than ?, where ? is a wavelength of a peak of resonance caused by the photonic crystal, the photoelectric transducer satisfying the following formula: 0.2QV?Q??5.
    Type: Application
    Filed: December 17, 2010
    Publication date: November 1, 2012
    Applicants: Kyoto University, Sharp Kabushiki Kaisha
    Inventors: Hiroaki Shigeta, Yuhji Yashiro, Yuhsuke Tsuda, Susumu Noda, Masayuki Fujita, Yoshinori Tanaka
  • Patent number: 8300672
    Abstract: A two-dimensional photonic crystal laser light is provided. The two-dimensional photonic crystal laser includes a two-dimensional photonic crystal made of a plate-shaped member provided with a periodic arrangement of identically-shaped modified refractive index areas having a refractive index different from that of the plate-shaped member; and an active layer provided on one side of the two-dimensional photonic crystal. The modified refractive index areas are arranged at lattice points of a lattice with a same period at least in two directions; each modified refractive index area is shaped so that a feedback strength is different with respect to directions of two primitive lattice vectors of the lattice; the two-dimensional photonic crystal has a periodic structure of a supercell, which contains a plurality of lattice points; and the sum of the feedback strengths by all modified refractive index areas in the supercell is identical in each direction of the two primitive lattice vectors.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: October 30, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Susumu Noda, Seita Iwahashi, Yoshitaka Kurosaka, Kyosuke Sakai, Eiji Miyai, Dai Ohnishi, Wataru Kunishi
  • Patent number: 8284814
    Abstract: A laser capable of emitting multiple laser beams is provided. A two-dimensional photonic crystal laser according to the present invention has a laminated structure including an active layer, a first photonic crystal layer having a periodic distribution of refractive index with a first period, and a second photonic crystal layer having a periodic distribution of refractive index with a second period that differs from the first period. This two-dimensional photonic crystal laser can emit a main beam traveling in a direction perpendicular to the two-dimensional photonic crystals and side beams each traveling in a direction inclined with respect to the main beam. These beams can be used, for example, in a recording/reproducing device by means of an optical disk, the main beam being used for recording/reproducing information and the side beams for following up the track.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: October 9, 2012
    Assignees: Japan Science and Technology Agency, Rohm Co., Ltd.
    Inventors: Susumu Noda, Yoshitaka Kurosaka, Kyosuke Sakai, Eiji Miyai, Dai Ohnishi, Wataru Kunishi
  • Patent number: 8126306
    Abstract: A two-dimensional photonic crystal according to the present invention includes a first layer having a dielectric first layer slab in which first layer holes having a refractive index lower than that of the first layer slab are arranged cyclically, a second layer formed on the first layer, including dielectric columns having a refractive index higher than the air arranged in the air with the same cycle as the first layer hole, and a third layer having a dielectric third layer slab in which third layer holes having a refractive index lower than that of the third layer slab are arranged cyclically. Thus, it is possible to obtain the two-dimensional photonic crystal that can create a wider complete PBG than before regardless of the polarization of light and can be manufactured easily.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 28, 2012
    Assignee: Kyoto University
    Inventors: Susumu Noda, Takashi Asano, Keita Mochizuki
  • Publication number: 20120027038
    Abstract: A two-dimensional photonic crystal laser according to the present invention includes a two-dimensional photonic crystal layer 15 having a base body made of Al?Ga1-?As (0<?<1) or (Al?Ga1-?)?In1-?P (0<=?<1, 0<?<1) with modified refractive index areas (air holes) 151 periodically arranged therein and an epitaxial growth layer 16 created on the two-dimensional photonic crystal layer 15 by an epitaxial method. Since Al?Ga1-?As and (Al?Ga1-?)?In1-?P are solid even at high temperatures, the air holes 151 will not be deformed in the process of creating the epitaxial growth layer 16, so that the performance of the two-dimensional photonic crystal layer 15 as a resonator can be maintained at high levels.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicants: ROHM CO., LTD., KYOTO UNIVERSITY
    Inventors: Susumu Noda, Takui Sakaguchi, Kazuya Nagase, Wataru Kunishi, Eiji Miyai, Yoshikatsu Miura, Dai Ohnishi
  • Publication number: 20120002692
    Abstract: The present invention intends to provide a surface-emitting laser light source using a two-dimensional photonic crystal in which the efficiency of extracting light in a direction perpendicular to the surface is high. In a laser light source provided with a two-dimensional photonic crystal layer created from a plate-shaped matrix body in which a large number of holes are periodically arranged and an active layer arranged on one side of the two-dimensional photonic crystal layer, the holes are created to be columnar with a predetermined cross-sectional shape such as a circular shape, and the main axis of each of the columnar holes is tilted to a surface of the matrix body. When provided with this two-dimensional photonic crystal layer, the surface-emitting laser source using a two-dimensional photonic crystal has a Q? value (i.e.
    Type: Application
    Filed: September 2, 2011
    Publication date: January 5, 2012
    Applicants: ROHM Co., Ltd., Kyoto University
    Inventors: Susumu Noda, Eiji Miyai, Dai Ohnishi
  • Patent number: 8009953
    Abstract: An object of the present invention is to provide a three-dimensional photonic crystal which allows an internal formation of a defect structure with an arbitrary shape and size. Multiple holes extending to two different directions are formed obliquely to a base body surface in order to form a first crystal and a second crystal. Base body left between the holes are made to be rods. Moreover, a connection crystal layer is formed by a part of rods having a size different from that of the rods in the first crystal and the second crystal. The connection crystal layer is held between the first crystal and the second crystal and they are fused. In a three-dimensional photonic crystal thus obtained, the rod becomes a point defect. The shape and size of the point defect can be arbitrarily set in any directions within the connection crystal layer. The shape and size of the point defect can also be controlled by adjusting the thickness of the connection crystal layer.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: August 30, 2011
    Assignee: Kyoto University
    Inventors: Susumu Noda, Makoto Okano, Masahiro Imada, Shigeki Takahashi
  • Publication number: 20110188526
    Abstract: A two-dimensional photonic crystal laser light is provided. The two-dimensional photonic crystal laser includes a two-dimensional photonic crystal made of a plate-shaped member provided with a periodic arrangement of identically-shaped modified refractive index areas having a refractive index different from that of the plate-shaped member; and an active layer provided on one side of the two-dimensional photonic crystal. The modified refractive index areas are arranged at lattice points of a lattice with a same period at least in two directions; each modified refractive index area is shaped so that a feedback strength is different with respect to directions of two primitive lattice vectors of the lattice; the two-dimensional photonic crystal has a periodic structure of a supercell, which contains a plurality of lattice points; and the sum of the feedback strengths by all modified refractive index areas in the supercell is identical in each direction of the two primitive lattice vectors.
    Type: Application
    Filed: August 18, 2009
    Publication date: August 4, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Susumu Noda, Seita Iwahashi, Yoshitaka Kurosaka, Kyosuke Sakai, Eiji Miyai, Dai Ohnishi, Wataru Kunishi
  • Patent number: 7978745
    Abstract: Two-dimensional photonic crystal surface-emitting laser comprising a two-dimensional photonic crystal, having media different in refractive index arrayed in a two-dimensional cycle, disposed in the vicinity of an active layer that emits light by the injection of carriers, wherein the two-dimensional photonic crystal consists of square lattices having equal lattice constants in perpendicular directions, and a basic lattice consisting of a square with one medium as a vertex has an asymmetric refractive index distribution with respect to either one of the two diagonals of the basic lattice to thereby emit light in a constant polarizing direction.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 12, 2011
    Assignees: Japan Science and Technology Agency, Konica Minolta Opto, Inc.
    Inventors: Susumu Noda, Mitsuru Yokoyama, Takuji Hatano
  • Patent number: 7973924
    Abstract: A highly sensitive and compactable target substance sensor for detection of the target substance using a photonic crystal and a method thereof. The sensor includes an electromagnetic wave source of supplying an electromagnetic wave, a photonic sensor element, and a detector. The photonic sensor element has photonic crystalline structure and is configured to include a sensor waveguide for introducing the electromagnetic wave, and a sensing resonator electromagnetically coupled to the sensor waveguide for resonating the electromagnetic wave at specific wavelength. The sensing resonator is exposed to an atmosphere including the target substance so as to vary a characteristic of the electromagnetic wave emitted from the sensing resonator. The detector is configured to receive the electromagnetic wave emitted from the sensing resonator to recognize an intensity variation of the electromagnetic wave and issue a signal indicative of a characteristic of the target substance.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 5, 2011
    Assignees: Kyoto University, Panasonic Electric Works Co., Ltd.
    Inventors: Susumu Noda, Takashi Asano, Hitomichi Takano
  • Publication number: 20110151673
    Abstract: A plasma etching method capable of oblique etching with a high aspect ratio and high uniformity is provided. In the plasma etching method, a base body is etched with a high aspect ratio by the following process: An electric-field control device having an ion-introducing orifice penetrating therethrough in a direction inclined from the normal to the surface of a base body is placed on or above the surface of this base body. Plasma is generated on the surface of the base body on or above which the electric-field control is placed. A potential difference is formed between the plasma and the base body so as to attract ions in the plasma toward the base body.
    Type: Application
    Filed: August 27, 2009
    Publication date: June 23, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Susumu Noda, Shigeki Takahashi