Patents by Inventor Suvi Haukka

Suvi Haukka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12024772
    Abstract: In accordance with some embodiments herein, apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other so as to minimize or prevent undesired chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: July 2, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Jun Kawahara, Suvi Haukka, Antti Niskanen, Eva Tois, Raija Matero, Hidemi Suemori, Jaako Anttila, Yukihiro Mori
  • Patent number: 11967488
    Abstract: A system and method for treating a deposition reactor are disclosed. The system and method remove or mitigate formation of residue in a gas-phase reactor used to deposit doped metal films, such as aluminum-doped titanium carbide films or aluminum-doped tantalum carbide films. The method includes a step of exposing a reaction chamber to a treatment reactant that mitigates formation of species that lead to residue formation.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: April 23, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi Haukka, Eric James Shero, Fred Alokozai, Dong Li, Jereld Lee Winkler, Xichong Chen
  • Publication number: 20240026548
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: July 10, 2023
    Publication date: January 25, 2024
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Publication number: 20240014012
    Abstract: A system and method for treating a deposition reactor are disclosed. The system and method remove or mitigate formation of residue in a gas-phase reactor used to deposit doped metal films, such as aluminum-doped titanium carbide films or aluminum-doped tantalum carbide films. The method includes a step of exposing a reaction chamber to a treatment reactant that mitigates formation of species that lead to residue formation.
    Type: Application
    Filed: May 16, 2022
    Publication date: January 11, 2024
    Inventors: Suvi Haukka, Eric James Shero, Fred Alokozai, Dong Li, Jereld Lee Winkler, Xichong Chen
  • Publication number: 20230374671
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 23, 2023
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 11739427
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: August 29, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 11739428
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: August 29, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 11728164
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: August 15, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Publication number: 20230230813
    Abstract: A system and method for treating a deposition reactor are disclosed. The system and method remove or mitigate formation of residue in a gas-phase reactor used to deposit doped metal films, such as aluminum-doped titanium carbide films or aluminum-doped tantalum carbide films. The method includes a step of exposing a reaction chamber to a treatment reactant that mitigates formation of species that lead to residue formation.
    Type: Application
    Filed: May 16, 2022
    Publication date: July 20, 2023
    Inventors: Suvi Haukka, Eric James Shero, Fred Alokozai, Dong Li, Jereld Lee Winkler, Xichong Chen
  • Publication number: 20230207309
    Abstract: According to the invention there is provided a method of filling one or more gaps created during manufacturing of a feature on a substrate by providing a deposition method comprising; introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant; introducing a second reactant to the substrate with a second dose. The first reactant is introduced with a sub saturating first dose reaching only a top area of the surface of the one or more gaps and the second reactant is introduced with a saturating second dose reaching a bottom area of the surface of the one or more gaps. A third reactant may be provided to the substrate in the reaction chamber with a third dose, the third reactant reacting with at least one of the first and second reactant.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Steven R.A. Van Aerde, Suvi Haukka, Atsuki Fukazawa, Hideaki Fukuda
  • Publication number: 20230203644
    Abstract: In some embodiments, methods are provided for simultaneously and selectively depositing a first material on a first surface of a substrate and a second, different material on a second, different surface of the same substrate using the same reaction chemistries. For example, a first material may be selectively deposited on a metal surface while a second material is simultaneously and selectively deposited on an adjacent dielectric surface. The first material and the second material have different material properties, such as different etch rates.
    Type: Application
    Filed: February 16, 2023
    Publication date: June 29, 2023
    Inventors: Michael Eugene Givens, Eva Tois, Suvi Haukka, Daria Nevstrueva, Charles Dezelah
  • Patent number: 11649546
    Abstract: A method for selectively depositing a metal oxide film is disclosed. In particular, the method comprises pulsing a metal or semi-metal precursor onto the substrate and pulsing an organic reactant onto the substrate. A reaction between the metal or semi-metal precursor and the organic reactant selectively forms a metal oxide film on either a dielectric layer or a metal layer.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: May 16, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Antti Niskanen, Eva Tois, Hidemi Suemori, Suvi Haukka
  • Patent number: 11646194
    Abstract: The present invention relates to methods of forming silicon nitride thin films on a substrate in a reaction chamber by plasma enhanced atomic layer deposition (PEALD). Exemplary methods include the steps of (i) introducing an octahalotrisilane Si3X8 silicon precursor, such as octachlorotrisilane (OCTS) Si3Cl8, into a reaction space containing a substrate, (ii) introducing a nitrogen containing plasma into the reaction space, and wherein steps (i), (ii) and any steps in between constitute one cycle, and repeating said cycles a plurality of times until an atomic layer nitride film having a desired thickness is obtained.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: May 9, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Antti Niskanen, Suvi Haukka, Jaakko Anttila
  • Patent number: 11610775
    Abstract: According to the invention there is provided a method of filling one or more gaps created during manufacturing of a feature on a substrate by providing a deposition method comprising; introducing a first reactant to the substrate with a first dose, thereby forming no more than about one monolayer by the first reactant; introducing a second reactant to the substrate with a second dose. The first reactant is introduced with a subsaturating first dose reaching only a top area of the surface of the one or more gaps and the second reactant is introduced with a saturating second dose reaching a bottom area of the surface of the one or more gaps. A third reactant may be provided to the substrate in the reaction chamber with a third dose, the third reactant reacting with at least one of the first and second reactant.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 21, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Viljami Pore, Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Steven R. A. Van Aerde, Suvi Haukka, Atsuki Fukazawa, Hideaki Fukuda
  • Patent number: 11608557
    Abstract: In some embodiments, methods are provided for simultaneously and selectively depositing a first material on a first surface of a substrate and a second, different material on a second, different surface of the same substrate using the same reaction chemistries. For example, a first material may be selectively deposited on a metal surface while a second material is simultaneously and selectively deposited on an adjacent dielectric surface. The first material and the second material have different material properties, such as different etch rates.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 21, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Michael Eugene Givens, Eva Tois, Suvi Haukka, Daria Nevstrueva, Charles Dezelah
  • Publication number: 20230031720
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: March 8, 2022
    Publication date: February 2, 2023
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 11555242
    Abstract: Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: January 17, 2023
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Timo Hatanpaa, Jaakko Niinisto, Mikko Ritala, Markku Leskela, Suvi Haukka
  • Patent number: 11501965
    Abstract: Methods for depositing oxide thin films, such as metal oxide, metal silicates, silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first reactant that comprises oxygen and a component of the oxide, and a second reactant comprising reactive species that does not include oxygen species. In some embodiments the plasma power used to generate the reactive species can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features. In some embodiments oxide thin films are selectively deposited on a first surface of a substrate relative to a second surface, such as on a dielectric surface relative to a metal or metallic surface.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 15, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia, Eva Tois, Suvi Haukka, Toshiya Suzuki
  • Publication number: 20220341040
    Abstract: In accordance with some embodiments herein, apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other so as to minimize or prevent undesired chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Inventors: Jun Kawahara, Suvi Haukka, Antti Niskanen, Eva Tois, Raija Matero, Hidemi Suemori, Jaako Anttila, Yukihiro Mori
  • Publication number: 20220277937
    Abstract: A system and method for treating a deposition reactor are disclosed. The system and method remove or mitigate formation of residue in a gas-phase reactor used to deposit doped metal films, such as aluminum-doped titanium carbide films or aluminum-doped tantalum carbide films. The method includes a step of exposing a reaction chamber to a treatment reactant that mitigates formation of species that lead to residue formation.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Suvi Haukka, Eric James Shero, Fred Alokozai, Dong Li, Jereld Lee Winkler, Xichong Chen