Patents by Inventor Suvi Haukka

Suvi Haukka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200308710
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: May 22, 2020
    Publication date: October 1, 2020
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10784105
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: September 22, 2020
    Assignee: ASM International N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20200224311
    Abstract: A method for selectively depositing a metal oxide film is disclosed. In particular, the method comprises pulsing a metal or semi-metal precursor onto the substrate and pulsing an organic reactant onto the substrate. A reaction between the metal or semi-metal precursor and the organic reactant selectively forms a metal oxide film on either a dielectric layer or a metal layer.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Antti Niskanen, Eva Tois, Hidemi Suemori, Suvi Haukka
  • Patent number: 10707082
    Abstract: Atomic layer deposition (ALD) processes for forming thin films comprising InN are provided. The thin films may find use, for example, in light-emitting diodes.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: July 7, 2020
    Assignee: ASM International N.V.
    Inventors: Suvi Haukka, Viljami J. Pore, Antti Niskanen
  • Publication number: 20200203145
    Abstract: The present invention relates to methods of forming silicon nitride thin films on a substrate in a reaction chamber by plasma enhanced atomic layer deposition (PEALD). Exemplary methods include the steps of (i) introducing an octahalotrisilane Si3X8 silicon precursor, such as octachlorotrisilane (OCTS) Si3Cl8, into a reaction space containing a substrate, (ii) introducing a nitrogen containing plasma into the reaction space, and wherein steps (i), (ii) and any steps in between constitute one cycle, and repeating said cycles a plurality of times until an atomic layer nitride film having a desired thickness is obtained.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 25, 2020
    Inventors: Antti Niskanen, Suvi Haukka, Jaakko Anttila
  • Publication number: 20200185218
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Patent number: 10662534
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 26, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10636889
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: April 28, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Patent number: 10612137
    Abstract: A method for selectively depositing a metal oxide film is disclosed. In particular, the method comprises pulsing a metal or semi-metal precursor onto the substrate and pulsing an organic reactant onto the substrate. A reaction between the metal or semi-metal precursor and the organic reactant selectively forms a metal oxide film on either a dielectric layer or a metal layer.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: April 7, 2020
    Assignee: ASM IP Holdings B.V.
    Inventors: Antti Niskanen, Eva Tois, Hidemi Suemori, Suvi Haukka
  • Publication number: 20200071828
    Abstract: In accordance with some embodiments herein, methods and apparatuses for deposition of thin films are provided.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Bert Jongbloed, Delphine Longrie, Robin Roelofs, Lucian Jdira, Suvi Haukka, Antti Niskanen, Jun Kawahara, Yukihiro Mori
  • Publication number: 20200066512
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Application
    Filed: May 3, 2018
    Publication date: February 27, 2020
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Patent number: 10573511
    Abstract: The present invention relates to methods of forming silicon nitride thin films on a substrate in a reaction chamber by plasma enhanced atomic layer deposition (PEALD). Exemplary methods include the steps of (i) introducing an octahalotrisilane Si3X8 silicon precursor, such as octachlorotrisilane (OCTS) Si3Cl8, into a reaction space containing a substrate, (ii) introducing a nitrogen containing plasma into the reaction space, and wherein steps (i), (ii) and any steps in between constitute one cycle, and repeating said cycles a plurality of times until an atomic layer nitride film having a desired thickness is obtained.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 25, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Antti Niskanen, Suvi Haukka, Jaakko Anttila
  • Publication number: 20190382887
    Abstract: Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
    Type: Application
    Filed: July 2, 2019
    Publication date: December 19, 2019
    Inventors: Timo Hatanpaa, Jaakko Niinisto, Mikko Ritala, Markku Leskela, Suvi Haukka
  • Patent number: 10510530
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: December 17, 2019
    Assignee: ASM International N.V.
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba
  • Publication number: 20190375638
    Abstract: Methods of forming carbon nanotubes and structures and devices including carbon nanotubes are disclosed. Methods of forming the carbon nanotubes include patterning a surface of a substrate with polymeric material, removing portions of the polymeric material to form exposed substrate surface sections, and forming the carbon nanotubes on the exposed substrate sections.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 12, 2019
    Inventor: Suvi Haukka
  • Publication number: 20190252195
    Abstract: A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process is disclosed. The method may include: contacting the substrate with a first vapor phase reactant comprising a metalorganic precursor, the metalorganic precursor comprising a metal selected from the group consisting of a cobalt, nickel, tungsten, molybdenum, manganese, iron, and combinations thereof. The method may also include; contacting the substrate with a second vapor phase reactant comprising ruthenium tetroxide (RuO4); wherein the ruthenium-containing film comprises a ruthenium-metal alloy. Semiconductor device structures including ruthenium-metal alloys deposited by the methods of the disclosure are also disclosed.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 15, 2019
    Inventor: Suvi Haukka
  • Publication number: 20190242019
    Abstract: Thermal atomic layer etching processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase halide reactant and a second vapor halide reactant. In some embodiments, the first reactant may comprise an organic halide compound. During the thermal ALE cycle, the substrate is not contacted with a plasma reactant.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Tom E. Blomberg, Varun Sharma, Suvi Haukka, Marko Tuominen, Chiyu Zhu
  • Patent number: 10343920
    Abstract: Methods of forming carbon nanotubes and structures and devices including carbon nanotubes are disclosed. Methods of forming the carbon nanotubes include patterning a surface of a substrate with polymeric material, removing portions of the polymeric material to form exposed substrate surface sections, and forming the carbon nanotubes on the exposed substrate sections.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 9, 2019
    Assignee: ASM IP Holding B.V.
    Inventor: Suvi Haukka
  • Patent number: 10344378
    Abstract: Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: July 9, 2019
    Assignee: ASM International N.V.
    Inventors: Timo Hatanpaa, Jaakko Niinisto, Mikko Ritala, Markku Leskela, Suvi Haukka
  • Publication number: 20190172708
    Abstract: The present disclosure relates to the deposition of dopant films, such as doped silicon oxide films, by atomic layer deposition processes. In some embodiments, a substrate in a reaction space is contacted with pulses of a silicon precursor and a dopant precursor, such that the silicon precursor and dopant precursor adsorb on the substrate surface. Oxygen plasma is used to convert the adsorbed silicon precursor and dopant precursor to doped silicon oxide.
    Type: Application
    Filed: November 15, 2018
    Publication date: June 6, 2019
    Inventors: Noboru Takamure, Atsuki Fukazawa, Hideaki Fukuda, Antti Niskanen, Suvi Haukka, Ryu Nakano, Kunitoshi Namba