Patents by Inventor Suzuya Yamada

Suzuya Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120223448
    Abstract: Provided is a production method of a ?-sialon phosphor that europium ions are solid-solved in ?-sialon, including a mixing process for mixing raw materials of the ?-sialon phosphor; a burning process for burning the raw materials after the mixing process to form the ?-sialon phosphor; a HIP treatment process in which the ?-sialon phosphor after the burning process is subjected to a HIP treatment; an annealing process in which the ?-sialon phosphor after the HIP treatment process is subjected to an annealing treatment; and an acid treatment process in which the ?-sialon phosphor after the annealing process is subjected to an acid treatment. According to the production method of a ?-sialon phosphor, a ?-sialon phosphor excellent in luminescence intensity is obtained.
    Type: Application
    Filed: November 1, 2010
    Publication date: September 6, 2012
    Inventors: Tomohiro Nomiyama, Suzuya Yamada, Hisayuki Hashimoto
  • Patent number: 7442661
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 28, 2008
    Assignees: National Institute of Advanced Industrial Science and Technology, Denki Kagku Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Hirao, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Patent number: 7417002
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 26, 2008
    Assignees: National Institute of Advanced Industrial Science and Technology, Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Hirao, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Publication number: 20080063583
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 13, 2008
    Applicants: Nat'l Inst. of Advanced Ind. Science and Tech., Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Hirao, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Publication number: 20070135292
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Application
    Filed: December 29, 2006
    Publication date: June 14, 2007
    Applicants: Nat'l Inst. of Advanced Ind. Science and Tech., Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi HIRAO, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Publication number: 20060247120
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Application
    Filed: June 30, 2006
    Publication date: November 2, 2006
    Applicants: Nat'l Inst. of Advanced Ind. Science and Tech., Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Hirao, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Publication number: 20050059541
    Abstract: A boron carbide based sintered body having a four-point flexural strength of at least 400 MPa and a fracture toughness of at least 2.8 MPa·m1/2, which has the following two preferred embodiments. (1) A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of a B4C powder, a TiO2 powder and a C powder while reacting them under a pressurized condition and comprising from 95 to 70 mol % of boron carbide and from 5 to 30 mol % of titanium diboride, wherein the boron carbide has a maximum particle diameter of at most 5 ?m. (2) A boron carbide-chromium diboride sintered body containing from 10 to 25 mol % of CrB2 in B4C, wherein the sintered body has a relative density of at least 90%, boron carbide particles in the sintered body have a maximum particle diameter of at most 100 ?m, and the abundance ratio (area ratio) of boron carbide particles of from 10 to 100 ?m to boron carbide particles having a particle diameter of at most 5 ?m, is from 0.02 to 0.6.
    Type: Application
    Filed: November 6, 2002
    Publication date: March 17, 2005
    Inventors: Kiyoshi Hirao, Shuji Sakaguchi, Yukihiko Yamauchi, Shuzo Kanzaki, Suzuya Yamada
  • Patent number: 4878866
    Abstract: A thermionic cathode structure comprises two parallel thermionic electron emitter elements which are made of a heat resistant and electric conductive inorganic compound. Each of them has one end electrically closed and the other end functioning as a current feeding port.
    Type: Grant
    Filed: July 22, 1988
    Date of Patent: November 7, 1989
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshiharu Mori, Suzuya Yamada, Mitsuaki Saito, Hirotoshi Hagiwara, Kenichi Ehara