Patents by Inventor Sven Crone

Sven Crone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10940427
    Abstract: Disclosed is a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) is applied which is obtained by hydrogenation of a stream (S1) comprising at least one alkane and least one olefin. The stream (S2) comprises one alkane and a reduced amount of at least one olefin compared to the amount in the stream (S1). Then the stream (S2) is converted from the liquid into the gaseous phase and the adsorber is regenerated by contact with the gaseous stream (S2).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: March 9, 2021
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Heinz Ruetter, Patrik Pietz, Sven Crone, Markus Eggersmann, Kam Wing Wong
  • Patent number: 10894921
    Abstract: Disclosed is a process for the regeneration of an adsorber (A1). The adsorber (A1) is regenerated by contact with a gaseous stream (S2) and the outflow of the adsorber (A1) comprising condensate of stream (S2) and organic composition (OC1) collected in a device. After regeneration of the adsorber (A1) the stream (S2) in the adsorber (A1) is replaced completely or at least partially by the content of the device. Then the adsorber (A1) is fed with organic composition comprising at least one olefin, at least one alkane and at least one compound containing oxygen and/or sulfur.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: January 19, 2021
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Patent number: 10807018
    Abstract: Disclosed is a process for the purification of an organic composition (OC1) by adsorption using an assembly containing at least two adsorbers. The organic composition (OC1) comprising at least one alkane, at least one olefin and at least one compound containing oxygen and/or sulphur is fed into a first adsorber (A1) of the assembly in order to obtain an organic composition (OC2) comprising at least one alkane, at least one olefin and a reduced amount of at least one compound containing oxygen and/or sulphur compared to the respective amount in organic composition (OC1). Hydrogenation of the organic composition (OC2) provides a stream (S2) comprising at least one alkane and a reduced amount of at least one olefin compared to the respective amount in organic composition (OC2) obtained after feeding into the first adsorber (A1). A second adsorber (A2) of the assembly is regenerated by contact with stream (S2).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: October 20, 2020
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Markus Eggersmann, Sven Crone, Kam Wing Wong, Heinz Ruetter, Patrik Pietz
  • Patent number: 10550047
    Abstract: A process for the production of oligomerized olefins comprising the following steps: purification of an organic composition (OC1) in at least one adsorber to obtain an organic composition (OC2); oligomerization of organic composition (OC2) in the presence of a catalyst to obtain an organic composition (OC3); distillation of organic composition (OC3) in a distillation column (D1) to obtain an organic composition (OC4) from the upper part of (D1) and an organic composition (OC5) from the lower part of (D1); hydrogenation of organic composition (OC4) to obtain an organic composition (OC11) and regeneration of an adsorber (A1) employing organic composition (OC11) as regeneration media.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: February 4, 2020
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Patent number: 10137400
    Abstract: The invention relates to a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) comprising at least one alkane is converted from liquid phase into gaseous phase. Then the adsorber is regenerated and heated by contact with gaseous stream (S2) up to 230 to 270° C. Subsequently, the adsorber is cooled first by contact with gaseous stream (S2) to a temperature of 90 to 150° C. followed by cooling with liquid stream (S2) to a temperature below 80° C. The outflow of the adsorber (S2*) during the cooling with gaseous stream (S2) and optionally the outflow of the adsorber (S2*) during cooling with liquid stream (S2) is recycled in at least one of these steps.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: November 27, 2018
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Heinz Ruetter, Patrik Pietz, Sven Crone, Markus Eggersmann, Kam Wing Wong
  • Patent number: 9943828
    Abstract: The invention relates to a process for regeneration of an adsorber (A) by contact with a stream (S1), wherein the stream (S1) is heated in advance by at least two heat exchange units (HEU1) and (HEU2). As outflow of the adsorber (A) a stream (S2) is obtained, which is passed through at least two heat exchange units (HEU1) and (HEU2) traversed by stream (S1), wherein the temperature of stream (S2) fed into each heat exchange unit is higher than the temperature of stream (S1) fed into the heat exchange units (HEU1) and (HEU2), in order to directly transfer heat from stream (S2) to stream (S1).
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: April 17, 2018
    Assignee: BASF SE
    Inventors: Hans-Guenter Wagner, Christoph Bayer, Lothar Karrer, Sven Crone, Markus Eggersmann, Guenther Kirchner, Gabriele Zimmer, Kam Wing Wong, Patrik Pietz, Heinz Ruetter
  • Publication number: 20170333828
    Abstract: The invention relates to a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) comprising at least one alkane is converted from liquid phase into gaseous phase. Then the adsorber is regenerated and heated by contact with gaseous stream (S2) up to 230 to 270° C. Subsequently, the adsorber is cooled first by contact with gaseous stream (S2) to a temperature of 90 to 150° C. followed by cooling with liquid stream (S2) to a temperature below 80° C. The outflow of the adsorber (S2*) during the cooling with gaseous stream (S2) and optionally the outflow of the adsorber (S2*) during cooling with liquid stream (S2) is recycled in at least one of these steps.
    Type: Application
    Filed: October 9, 2014
    Publication date: November 23, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Heinz RUETTER, Patrik PIETZ, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG
  • Publication number: 20170259188
    Abstract: Disclosed is a process for the purification of an organic composition (OC1) by adsorption using an assembly containing at least two adsorbers. The organic composition (OC1) comprising at least one alkane, at least one olefin and at least one compound containing oxygen and/or sulphur is fed into a first adsorber (A1) of the assembly in order to obtain an organic composition (OC2) comprising at least one alkane, at least one olefin and a reduced amount of at least one compound containing oxygen and/or sulphur compared to the respective amount in organic composition (OC1). Hydrogenation of the organic composition (OC2) provides a stream (S2) comprising at least one alkane and a reduced amount of at least one olefin compared to the respective amount in organic composition (OC2) obtained after feeding into the first adsorber (A1). A second adsorber (A2) of the assembly is regenerated by contact with stream (S2).
    Type: Application
    Filed: October 9, 2014
    Publication date: September 14, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Markus EGGERSMANN, Sven CRONE, Kam Wing WONG, Heinz RUETTER, Patrik PIETZ
  • Publication number: 20170252723
    Abstract: The invention relates to a process for regeneration of an adsorber (A) by contact with a stream (S1), wherein the stream (S1) is heated in advance by at least two heat exchange units (HEU1) and (HEU2). As outflow of the adsorber (A) a stream (S2) is obtained, which is passed through at least two heat exchange units (HEU1) and (HEU2) traversed by stream (S1), wherein the temperature of stream (S2) fed into each heat exchange unit is higher than the temperature of stream (S1) fed into the heat exchange units (HEU1) and (HEU2), in order to directly transfer heat from stream (S2) to stream (S1).
    Type: Application
    Filed: October 9, 2014
    Publication date: September 7, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Guenther KIRCHNER, Gabriele ZIMMER, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170247621
    Abstract: Disclosed is a process for the regeneration of an adsorber (A1). The adsorber (A1) is regenerated by contact with a gaseous stream (S2) and the outflow of the adsorber (A1) comprising condensate of stream (S2) and organic composition (OC1) collected in a device. After regeneration of the adsorber (A1) the stream (S2) in the adsorber (A1) is replaced completely or at least partially by the content of the device. Then the adsorber (A1) is fed with organic composition comprising at least one olefin, at least one alkane and at least one compound containing oxygen and/or sulfur.
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170247298
    Abstract: A process for the production of oligomerized olefins comprising the following steps: purification of an organic composition (OC1) in at least one adsorber to obtain an organic composition (OC2); oligomerization of organic composition (OC2) in the presence of a catalyst to obtain an organic composition (OC3); distillation of organic composition (OC3) in a distillation column (D1) to obtain an organic composition (OC4) from the upper part of (D1) and an organic composition (OC5) from the lower part of (D1); hydrogenation of organic composition (OC4) to obtain an organic composition (OC1 1) and regeneration of an adsorber (A1) employing organic composition (OC11) as regeneration media.
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG, Patrik PIETZ, Heinz RUETTER
  • Publication number: 20170246585
    Abstract: Disclosed is a process for the regeneration of an adsorber. For the regeneration a liquid stream (S2) is applied which is obtained by hydrogenation of a stream (S1) comprising at least one alkane and least one olefin. The stream (S2) comprises one alkane and a reduced amount of at least one olefin compared to the amount in the stream (S1). Then the stream (S2) is converted from the liquid into the gaseous phase and the adsorber is regenerated by contact with the gaseous stream (S2).
    Type: Application
    Filed: October 9, 2014
    Publication date: August 31, 2017
    Applicant: BASF SE
    Inventors: Hans-Guenter WAGNER, Christoph BAYER, Lothar KARRER, Heinz RUETTER, Patrik PIETZ, Sven CRONE, Markus EGGERSMANN, Kam Wing WONG
  • Patent number: 9266808
    Abstract: The present invention relates to a process for preparing hydroformylation products of olefins having at least four carbon atoms, in which a high proportion of both the linear Ci-olefins having a terminal double bond comprised in the olefin-comprising feed used and of the linear Ci-olefins having an internal double bond is converted into hydroformylation products. Furthermore, the invention relates to a process for preparing 2-propylheptanol which comprises such a hydroformylation process.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 23, 2016
    Assignee: BASF SE
    Inventors: Marcus Sigl, Frank Poplow, Rainer Papp, Thomas Mackewitz, Dag Wiebelhaus, Rocco Paciello, Thomas Heldemann, Frank Heimann, Stefan Bitterlich, Martin Volland, Sven Crone, Christoph Obler
  • Patent number: 8969644
    Abstract: A method is proposed for providing an oxygen-containing gas stream for the endothermic reaction of an initial stream comprising one or more hydrocarbons, having a predetermined oxygen concentration and a predetermined temperature, wherein a fluid fuel stream is combusted with a primary air stream at ? values of the primary air stream to the fluid fuel stream of from 0.6 to 1.2 to obtain a combustion gas stream, and a secondary air stream is admixed to the combustion gas stream to obtain the oxygen-containing gas stream for the endothermic reaction, with the predetermined oxygen concentration and the predetermined temperature of the oxygen-containing gas stream being adjusted via the flow rate and the temperature of the secondary air stream.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: March 3, 2015
    Assignee: BASF SE
    Inventors: Gerhard Olbert, Franz Corr, Sven Crone
  • Patent number: 8680353
    Abstract: A process for preparing oligomers by continuous oligomerization of butenes is described, wherein a) a feed stream 1) comprising 1-butene and 2-butene in a total concentration of from 10 to 70% by weight and from 10 to 60% by weight of isobutane is reacted until more than 60% by weight of the 1-butene comprised in the feed stream 1 but less than 50% by weight of the 2-butene comprised in feed stream 1 have been converted into oligomers. b) The oligomers obtained in a) are separated off and optionally passed to a further work-up and the remaining residual stream is fed to work-up by distillation. c) Isobutane is separated off by distillation from the residual stream, and d) the isobutane-depleted stream obtained after the work-up by distillation c) is reacted to form oligomers.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Sven Crone, Oliver Ryll, Till Blum, Alexander Weck, Rainer Papp, Roland Krokoszinski, Heinrich-Josef Blankertz
  • Publication number: 20130131416
    Abstract: Process for preparing oligomers by continuous oligomerization of butenes, wherein a) a feed stream comprising 1-butene and 2-butene in a total concentration of from 10 to 70% by weight and from 10 to 60% by weight of isobutane is used (hereinafter referred to as feed stream 1), b) this feed stream 1 is reacted until more than 60% by weight of the 1-butene comprised in the feed stream 1 but less than 50% by weight of the 2-butene comprised in feed stream 1 have been converted into oligomers, c) the oligomers obtained in b) are separated off and optionally passed to a further work-up and the remaining residual stream is fed to work-up by distillation, d) isobutane is separated off by distillation from the residual stream, e) the isobutane-depleted stream obtained after the work-up by distillation d) (hereinafter referred to as feed stream 2) is reacted to form oligomers.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Inventors: Sven CRONE, Oliver RYLL, Till BLUM, Alexander WECK, Rainer PAPP, Roland KROKOSZINSKI, Heinrich-Josef BLANKERTZ
  • Patent number: 8338640
    Abstract: A process for heterogeneously catalyzed partial direct oxidation of propane and/or isobutane, in which target product is removed in a workup stage from the product gas mixture obtained in the reaction stage, the remaining residual product gas mixture is divided into two portions of the same composition, one portion is recycled into the reaction stage and the other portion is discharged, and both the reaction stage and the workup stage are operated at elevated pressure.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: December 25, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Machhammer, Sven Crone, Frieder Borgmeier, Klaus Joachim Mueller-Engel, Christoph Adami, Armin Diefenbacher
  • Patent number: 8088962
    Abstract: A process for preparing butadiene, comprising A) providing a stream (a) comprising n-butane; B) feeding stream (a) comprising into at least one first dehydrogenation zone and nonoxidatively catalytically dehydrogenating n-butane to obtain a stream (b) comprising n-butane, 1-butene, 2-butene, butadiene, hydrogen and low-boiling secondary constituents; C) feeding stream (b) and an oxygenous gas into at least one second dehydrogenation zone and oxidatively dehydrogenating n-butane, 1-butene and 2-butene to obtain a stream (c) comprising n-butane, 2-butene, butadiene, low-boiling secondary constituents, carbon oxides and steam, wherein stream (c) has a higher content of butadiene than stream (b); D) removing the low-boiling secondary constituents and steam to obtain a stream (d) substantially consisting of n-butane, 2-butene and butadiene; E) separating stream (d) into a stream (e1) consisting substantially of n-butane and 2-butene and a stream (e2) consisting substantially of butadiene by extractive distillation
    Type: Grant
    Filed: January 16, 2006
    Date of Patent: January 3, 2012
    Assignee: BASF SE
    Inventors: Catharina Klanner, Götz-Peter Schindler, Sven Crone, Frieder Borgmeier, Mark Duda, Falk Simon
  • Patent number: 7854906
    Abstract: A reactor for carrying out a reaction between two fluid starting materials over a catalyst bed with premixing of the fluid starting materials before introduction into the catalyst bed within a delay time of less than 150 ms in a mixing-in device, wherein the mixing-in device is made up of the following elements which are arranged essentially transverse to the inflow direction of the first fluid starting material stream: two or three rows arranged behind one another of tubes which have turbulence generators on the outside and constrict the flow cross section for the first fluid starting material stream to from ½ to 1/10, with the second fluid starting material stream being passed through the interiors of the tubes and injected via openings in the tubes into the first fluid starting material stream; a perforated plate upstream of the tubes; and a perforated plate downstream of the tubes, is proposed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 21, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerhard Olbert, Franz Corr, Sven Crone
  • Patent number: 7837856
    Abstract: A reactor for carrying out a continuous oxydehydrogenation of a feed gas stream of saturated hydrocarbons after premixing with an oxygen-comprising gas stream over a moving catalyst bed which is introduced in the longitudinal direction of their reactor between two concentric cylindrical holding devices so as to leave a central interior space and an intermediate space between the moving catalyst bed and the interior wall of the reactor to give a reaction gas mixture, wherein the reactor has two or more reactor sections which are separated from one another by disk-shaped deflection plates arranged alternately in the central interior space and divided in subregions by annular deflection plates arranged in the intermediate space between the moving catalyst bed and the interior wall of the reactor, in each case with a mixing-in device which is located upstream of the moving catalyst bed in the flow direction of the reaction gas mixture and comprises the following elements: two or three rows arranged behind one
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 23, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerhard Olbert, Franz Corr, Sven Crone