Patents by Inventor Svetlana Radovanov
Svetlana Radovanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11424097Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.Type: GrantFiled: July 8, 2020Date of Patent: August 23, 2022Assignee: APPLIED Materials, Inc.Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
-
Publication number: 20210383995Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having an opening formed in a front half thereof nearest the extraction aperture, wherein a rear half of the tubular cathode furthest from the extraction aperture is closed.Type: ApplicationFiled: August 20, 2021Publication date: December 9, 2021Applicant: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Patent number: 11127557Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.Type: GrantFiled: March 12, 2020Date of Patent: September 21, 2021Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Publication number: 20210287872Abstract: An ion source including a chamber housing defining an ion source chamber and including an extraction plate on a front side thereof, the extraction plate having an extraction aperture formed therein, and a tubular cathode disposed within the ion source chamber and having a slot formed in a front-facing semi-cylindrical portion thereof disposed in a confronting relationship with the extraction aperture, wherein a rear-facing semi-cylindrical portion of the tubular cathode directed away from the extraction aperture is closed.Type: ApplicationFiled: March 12, 2020Publication date: September 16, 2021Applicant: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson
-
Publication number: 20210090845Abstract: Provided herein are approaches for controlling an ion beam using an electrostatic filter with curved electrodes. In some embodiments, a system may include an electrostatic filter receiving an ion beam, the filter including first and second electrodes disposed opposite sides of an ion beam line, each of the first and second electrodes having a central region between first and second ends, wherein a distance between a first outer surface of the first electrode and a second outer surface of the second electrode varies along an electrode length axis extending between the first and second ends. The system may further include a power supply in communication with the electrostatic filter, the power supply operable to supply a voltage and a current to the first and second electrodes, wherein the variable distance between the first and second outer surfaces causes the ion beam to converge or diverge.Type: ApplicationFiled: September 19, 2019Publication date: March 25, 2021Applicant: APPLIED Materials, Inc.Inventors: Robert C. Lindberg, Alexandre Likhanskii, Wayne LeBlanc, Frank Sinclair, Svetlana Radovanov
-
Publication number: 20200343071Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.Type: ApplicationFiled: July 8, 2020Publication date: October 29, 2020Applicant: APPLIED Materials, Inc.Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
-
Patent number: 10748738Abstract: Provided herein are approaches for increasing efficiency of ion sources. In some embodiments, an apparatus, such as an ion source, may include a chamber housing having a first end wall and a second end wall, and an extraction plate coupled to at least one of the first end wall and the second end wall. The extraction plate may include an extraction aperture. The apparatus may further include a tubular cathode extending between the first end wall and the second end wall.Type: GrantFiled: March 18, 2019Date of Patent: August 18, 2020Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Svetlana Radovanov, Frank Sinclair, You Chia Li, Peter Ewing, Ajdin Sarajlic, Christopher A. Rowland, Nunzio Carbone
-
Patent number: 10468224Abstract: An apparatus may include an electrode assembly, the electrode assembly comprising a plurality of electrodes, arranged in a plurality of electrode pairs arranged to conduct an ion beam therethrough. A given electrode pair lies along a radius of an arc describing a nominal central ray trajectory, wherein a radius of a first electrode pair and an adjacent electrode pair define an angular spacing. The plurality of electrode pairs may define a plurality of angular spacings, wherein, in a first configuration, the plurality of angular spacings are not all equal. The apparatus may also include a power supply in communication with the EM, the power supply configured to independently supply voltage to the plurality of electrodes.Type: GrantFiled: April 9, 2018Date of Patent: November 5, 2019Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.Inventors: Svetlana Radovanov, Ana Samolov, Shengwu Chang, Frank Sinclair, Peter L. Kellerman
-
Publication number: 20190198283Abstract: An apparatus may include an electrode assembly, the electrode assembly comprising a plurality of electrodes, arranged in a plurality of electrode pairs arranged to conduct an ion beam therethrough. A given electrode pair lies along a radius of an arc describing a nominal central ray trajectory, wherein a radius of a first electrode pair and an adjacent electrode pair define an angular spacing. The plurality of electrode pairs may define a plurality of angular spacings, wherein, in a first configuration, the plurality of angular spacings are not all equal. The apparatus may also include a power supply in communication with the EM, the power supply configured to independently supply voltage to the plurality of electrodes.Type: ApplicationFiled: April 9, 2018Publication date: June 27, 2019Applicant: Varian Semiconductor Equipment Associates, Inc.Inventors: Svetlana Radovanov, Ana Samolov, Shengwu Chang, Frank Sinclair, Peter L. Kellerman
-
Patent number: 10049861Abstract: Disclosed is an inductively coupled RF plasma source that provides both magnetic confinement to reduce plasma losses and Faraday shielding to suppress parasitic capacitive components. The inductively coupled RF plasma system comprises an RF power source, plasma chamber, an array of permanent magnets, and an antenna array. The plasma chamber is comprised of walls and a dielectric window having an inner and outer surface wherein the inner surface seals the volume of the plasma chamber. The array of parallel conductive permanent magnets is electrically interconnected and embedded within the dielectric window walls proximate to the inner surface and coupled to ground on one end. The permanent magnet array elements are alternately magnetized toward and away from plasma in the plasma chamber to form a multi-cusp magnetic field. The antenna array may be comprised of parallel tubes through which an RF current is circulated. The antenna array is oriented perpendicular to the permanent magnet array.Type: GrantFiled: November 16, 2015Date of Patent: August 14, 2018Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.Inventors: Victor M. Benveniste, Svetlana Radovanov, Costel Biloiu
-
Patent number: 9536712Abstract: In one embodiment, a processing apparatus includes a plasma chamber configured to house a plasma comprising first ions and second ions. The apparatus may further include a resonance RF power supply to generate a drive signal that is coupled to the plasma chamber, the drive signal having a drive frequency. The apparatus may also include a magnet assembly to generate a magnetic field in the plasma chamber, wherein the magnet assembly is configured to generate a first magnetic field strength that imparts a first cyclotron frequency for the first ions that matches the drive frequency of the drive signal, wherein the first magnetic field strength imparts a second cyclotron frequency for the second ions that does not match the drive frequency of the drive signal, and wherein the first ions are selectively driven into a chamber wall of the plasma chamber.Type: GrantFiled: June 9, 2014Date of Patent: January 3, 2017Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: W. Davis Lee, Svetlana Radovanov, Peter F. Kurunczi
-
Patent number: 9514912Abstract: A processing apparatus may include: an extraction plate disposed along a side of a plasma chamber, the extraction plate having a first and second aperture, and middle portion between the first and second aperture, the first and second aperture being configured to define a first and second ion beam when the plasma is present in the plasma chamber and an extraction voltage is applied between the extraction plate and a substrate; a hidden deflection electrode disposed adjacent the middle portion outside of the plasma chamber, and electrically isolated from the extraction plate; and a hidden deflection electrode power supply to apply a bias voltage to the hidden deflection electrode, wherein the bias voltage is configured to modify a mean angle of incidence of ions and/or a range of angles of incidence centered around the mean angle of incidence in the first and second ion beam.Type: GrantFiled: October 24, 2014Date of Patent: December 6, 2016Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Costel Biloiu, Peter F. Kurunczi, Tyler Rockwell, Christopher Campbell, Vikram Singh, Svetlana Radovanov
-
Publication number: 20160071704Abstract: Disclosed is an inductively coupled RF plasma source that provides both magnetic confinement to reduce plasma losses and Faraday shielding to suppress parasitic capacitive components. The inductively coupled RF plasma system comprises an RF power source, plasma chamber, an array of permanent magnets, and an antenna array. The plasma chamber is comprised of walls and a dielectric window having an inner and outer surface wherein the inner surface seals the volume of the plasma chamber. The array of parallel conductive permanent magnets is electrically interconnected and embedded within the dielectric window walls proximate to the inner surface and coupled to ground on one end. The permanent magnet array elements are alternately magnetized toward and away from plasma in the plasma chamber to form a multi-cusp magnetic field. The antenna array may be comprised of parallel tubes through which an RF current is circulated. The antenna array is oriented perpendicular to the permanent magnet array.Type: ApplicationFiled: November 16, 2015Publication date: March 10, 2016Inventors: Victor M. Benveniste, Svetlana Radovanov, Costel Biloiu
-
Publication number: 20160071693Abstract: A processing apparatus may include: an extraction plate disposed along a side of a plasma chamber, the extraction plate having a first and second aperture, and middle portion between the first and second aperture, the first and second aperture being configured to define a first and second ion beam when the plasma is present in the plasma chamber and an extraction voltage is applied between the extraction plate and a substrate; a hidden deflection electrode disposed adjacent the middle portion outside of the plasma chamber, and electrically isolated from the extraction plate; and a hidden deflection electrode power supply to apply a bias voltage to the hidden deflection electrode, wherein the bias voltage is configured to modify a mean angle of incidence of ions and/or a range of angles of incidence centered around the mean angle of incidence in the first and second ion beam.Type: ApplicationFiled: October 24, 2014Publication date: March 10, 2016Inventors: Costel Biloiu, Peter F. Kurunczi, Tyler Rockwell, Christopher Campbell, Vikram Singh, Svetlana Radovanov
-
Publication number: 20150357167Abstract: In one embodiment, a processing apparatus includes a plasma chamber configured to house a plasma comprising first ions and second ions. The apparatus may further include a resonance RF power supply to generate a drive signal that is coupled to the plasma chamber, the drive signal having a drive frequency. The apparatus may also include a magnet assembly to generate a magnetic field in the plasma chamber, wherein the magnet assembly is configured to generate a first magnetic field strength that imparts a first cyclotron frequency for the first ions that matches the drive frequency of the drive signal, wherein the first magnetic field strength imparts a second cyclotron frequency for the second ions that does not match the drive frequency of the drive signal, and wherein the first ions are selectively driven into a chamber wall of the plasma chamber.Type: ApplicationFiled: June 9, 2014Publication date: December 10, 2015Inventors: W. Davis Lee, Svetlana Radovanov, Peter F. Kurunczi
-
Patent number: 9024273Abstract: An apparatus that generates molecular ions and methods to generate molecular ions are disclosed. At least a first species is ionized in an ion source. The first species ions and/or first species combine to form molecular ions. These molecular ions may be transported to a second chamber, which may be an arc chamber or diffusion chamber, and are extracted. The molecular ions may have a larger atomic mass than the first species or first species ions. A second species also may be ionized with the first species to form molecular ions. In one instance, the first and second species are both molecules.Type: GrantFiled: April 20, 2010Date of Patent: May 5, 2015Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Ludovic Godet, Svetlana Radovanov, Christopher R. Hatem
-
Patent number: 8877654Abstract: A plasma processing method is provided. The plasma processing method includes using the after-glow of a pulsed power plasma to perform conformal processing. During the afterglow, the equipotential field lines follow the contour of the workpiece surface, allowing ions to be introduced in a variety of incident angles, especially to non-planar surfaces. In another aspect of the disclosure, the platen may be biased positively during the plasma afterglow to attract negative ions toward the workpiece. Various conformal processing steps, such as implantation, etching and deposition may be performed.Type: GrantFiled: April 15, 2010Date of Patent: November 4, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Helen Maynard, Vikram Singh, Svetlana Radovanov, Harold Persing
-
Patent number: 8742373Abstract: A plasma is formed from one or more gases in a plasma chamber using at least a first power and a second power. A first ion species is generated at said first power and a second ion species is generated at said second power. In one embodiment, the first ion species and second ion species are implanted into a workpiece at two different energies using at least a first bias voltage and a second bias voltage. This may enable implantation to two different depths. These ion species may be atomic ions or molecular ions. The molecular ions may be larger than the gases used to form the plasma.Type: GrantFiled: December 10, 2010Date of Patent: June 3, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Svetlana Radovanov, Ludovic Godet, Christopher R. Hatem
-
Patent number: 8604443Abstract: A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.Type: GrantFiled: November 11, 2010Date of Patent: December 10, 2013Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Frank Sinclair, Victor M. Benveniste, Svetlana Radovanov, James S. Buff
-
Patent number: D956005Type: GrantFiled: September 19, 2019Date of Patent: June 28, 2022Assignee: APPLIED Materials, Inc.Inventors: Robert C. Lindberg, Alexandre Likhanskii, Wayne LeBlanc, Frank Sinclair, Svetlana Radovanov