Patents by Inventor Syed B. Qadri

Syed B. Qadri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9950961
    Abstract: A method and resulting composition made by: providing boron carbide and a dopant selected from silicon, aluminum, magnesium, and beryllium; and ball milling the boron carbide with the dopant until at least one out of fifteen of the boron and/or carbon atoms of the boron carbide are substituted with the dopant.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 24, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri, Manoj K. Kolel-Veetil, Noam Bernstein, Raymond M. Gamache
  • Publication number: 20180040472
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Application
    Filed: September 7, 2017
    Publication date: February 8, 2018
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Publication number: 20170362087
    Abstract: A method of making Si3N4 nanotubes and nanorods comprising adding agricultural husk material powder to a container, wherein the container is a covered boron nitride crucible, creating an inert atmosphere of nitrogen inside the container, applying heat, heating the agricultural husk material, and reacting the agricultural husk material and forming silicon nitride, wherein the silicon nitride is nanotubes and nanorods.
    Type: Application
    Filed: May 26, 2017
    Publication date: December 21, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 9773666
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 26, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemmullah A. Mahadik, Syed B Qadri, Michael J. Mehl
  • Publication number: 20160318810
    Abstract: A method and resulting composition made by: providing boron carbide and a dopant selected from silicon, aluminum, magnesium, and beryllium; and ball milling the boron carbide with the dopant until at least one out of fifteen of the boron and/or carbon atoms of the boron carbide are substituted with the dopant.
    Type: Application
    Filed: April 8, 2016
    Publication date: November 3, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri, Manoj K. Kolel-Veetil, Noam Bernstein, Raymond M. Gamache
  • Patent number: 9120679
    Abstract: This disclosure concerns a method of making silicon carbide involving adding agricultural husk material to a container, creating a vacuum or an inert atmosphere inside the container, applying conventional heating or microwave heating, heating rapidly, and reacting the material and forming silicon carbide (SiC).
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: September 1, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B Qadri, Arne W Fliflet, M Ashraf Imam, Bhakta B Rath, Edward P Gorzkowski, III
  • Patent number: 9051186
    Abstract: This disclosure concerns a method of making silicon carbide involving adding one from the group of rice husk material, sorghum, peanuts, maple leaves, and/or corn husk material to a container, creating a vacuum or an inert atmosphere inside the container, applying conventional heating or microwave heating, heating rapidly, and reacting the material and forming silicon carbide (SiC).
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: June 9, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B Qadri, Ame W Fliflet, M Ashraf Iman, Bhakta B Rath, Edward P Gorzkowski, III
  • Publication number: 20150140789
    Abstract: Described herein is a method for growing InN, GaN, and AlN materials, the method comprising alternate growth of GaN and either InN or AlN to obtain a film of InxGa1?xN, AlxGa1?xN, AlxIn1?xN, or AlxInyGa1?(x+y)N
    Type: Application
    Filed: December 16, 2014
    Publication date: May 21, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemmullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 8883326
    Abstract: A composition comprising india stabilized gadolinia wherein the india stabilized gadolinia is an oxide with a direct substitution of the indium ion for the gadolinia ion resulting in a compound with the formula InxGd2-xO3.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B Qadri, Guillermo R. Villalobos, Jasbinder S. Sanghera
  • Patent number: 8865301
    Abstract: A composition having nanoparticles of a refractory-metal boride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component, boron, and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles, boron, and an organic compound having a char yield of at least 60% by weight to form a precursor mixture. A composition having nanoparticles of a refractory-metal boride that is not in the form of a powder.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 21, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Andrew Saab, Matthew Laskoski, Syed B Qadri
  • Publication number: 20140287907
    Abstract: This disclosure concerns a method of making silicon carbide involving adding agricultural husk material to a container, creating a vacuum or an inert atmosphere inside the container, applying conventional heating or microwave heating, heating rapidly, and reacting the material and forming silicon carbide (SiC).
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Arne W. Fliflet, M. Ashraf Imam, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 8822023
    Abstract: A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 2, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Andrew Saab, Matthew Laskoski, Manoj K. Kolel-Veetil, Syed B Qadri
  • Patent number: 8815381
    Abstract: A composition having nanoparticles of a boron carbide and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising boron and an organic component. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining boron and an organic compound having a char yield of at least 60% by weight, and heating to form boron carbide or boron nitride nanoparticles.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: August 26, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Andrew Saab, Matthew Laskoski, Syed B Qadri
  • Patent number: 8778488
    Abstract: A composition having nanoparticles of silicon carbide and a carbonaceous matrix or silicon matrix. The composition is not in the form of a powder. A composition having silicon and an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining silicon and the organic compound and heating to form silicon carbide or silicon nitride nanoparticles.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 15, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Andrew Saab, Matthew Laskoski, Syed B Qadri
  • Publication number: 20130334666
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Applicant: The Government of the United Stated of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemmullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Publication number: 20130306899
    Abstract: A composition comprising india stabilized gadolinia wherein the india stablilized gadolinia is an oxide with a direct substitution of the indium ion for the gadolinia ion resulting in a compound with the formula InxGd2-xO3.
    Type: Application
    Filed: March 13, 2013
    Publication date: November 21, 2013
    Applicant: US Naval Research Laboratory
    Inventors: Syed B. Qadri, Guillermo R. Villalobos, Jasbinder S. Sanghera
  • Publication number: 20130272947
    Abstract: This disclosure concerns a method of making silicon carbide involving adding one from the group of rice husk material, sorghum, peanuts, maple leaves, and/or corn husk material to a container, creating a vacuum or an inert atmosphere inside the container, applying conventional heating or microwave heating, heating rapidly, and reacting the material and forming silicon carbide (SiC).
    Type: Application
    Filed: March 8, 2013
    Publication date: October 17, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Arne W. Fliflet, M. Ashraf Imam, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20130237403
    Abstract: A composition having nanoparticles of a boron carbide and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising boron and an organic component. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining boron and an organic compound having a char yield of at least 60% by weight, and heating to form boron carbide or boron nitride nanoparticles.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 12, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Andrew Saab, Matthew Laskoski, Syed B. Qadri
  • Publication number: 20130196132
    Abstract: A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Applicant: The Government of the United States as represented by the Secretary of the Vavy
    Inventors: Teddy M. Keller, Andrew Saab, Matthew Laskoski, Manoj K. Kolel-Veetil, Syed B. Qadri
  • Publication number: 20130196844
    Abstract: A composition having nanoparticles of silicon carbide and a carbonaceous matrix or silicon matrix. The composition is not in the form of a powder. A composition having silicon and an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining silicon and the organic compound and heating to form silicon carbide or silicon nitride nanoparticles.
    Type: Application
    Filed: March 11, 2013
    Publication date: August 1, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Andrew Saab, Matthew Laskoski, Syed B. Qadri