Patents by Inventor Syed B. Qadri

Syed B. Qadri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220406591
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal InN using a pulsed growth method at a temperature lower than 300° C.
    Type: Application
    Filed: August 3, 2022
    Publication date: December 22, 2022
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 11443942
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 13, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Publication number: 20210317549
    Abstract: An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. A method of suppressing the Samson phase, Al3Mg2, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 14, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri
  • Patent number: 11028462
    Abstract: A method of suppressing the Samson phase, Al3Mg2, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri
  • Patent number: 10937649
    Abstract: Described herein is a method for growing InN, GaN, and AlN materials, the method comprising alternate growth of GaN and either InN or AlN to obtain a film of InxGa1?xN, AlxGa1?xN, AlxIn1?xN, or AlxInyGa1?(x+y)N.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 2, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemmullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Publication number: 20210045417
    Abstract: Nano-structures of Aluminum Nitride and a method of producing nano-structures of Aluminum Nitride from nut shells comprising milling agricultural nuts into a fine nut powder, milling nanocrystalline Al2O3 into a powder, mixing, pressing the fine nut powder and the powder of nanocrystalline Al2O3, heating the pellet, maintaining the temperature of the pellet at about 1400° C., cooling the pellet, eliminating the residual carbon, and forming nano-structures of AlN. An Aluminum Nitride (AlN) product made from the steps of preparing powders of agricultural nuts using ball milling, preparing powders of nanocrystalline Al2O3, mixing the powders of agricultural nuts and the powders of nanocrystalline Al2O3 forming a homogenous sample powder of agricultural nuts and Al2O3, pressurizing, pyrolyzing the disk, and reacting the disk and the nitrogen atmosphere and forming AlN.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 18, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20200294792
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 10662062
    Abstract: Si3N4 nanotubes and nanorods wherein the nanotubes and nanorods of silicon nitride are pure ?-Si3N4 formed by carbothermal reduction of SiO2 from reacting agricultural husk material in heat and forming the silicon nitride nanotubes and nanorods.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 26, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 10472245
    Abstract: A method of making Nanostructured Zinc Silicate from renewable sources comprising preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate. The nanostructured zinc silicate from renewable sources product of the process of preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 12, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20190261664
    Abstract: A method of producing Aluminum Nitride comprising milling nuts into a powder, milling a powder of nanocrystalline Al2O3, mixing, pressing into a pellet, providing nitrogen, heating, and forming AlN. An Aluminum Nitride product from preparing powders of nuts and Al2O3, mixing, and forming a powder, pressurizing into a disk, pyrolizing in nitrogen, and forming AlN in a pure form and in the wurtzite phase. An Aluminum Nitride (AlN) from preparing powders of agricultural nuts, preparing powders of nanocrystalline Al2O3, mixing the powders and thereby forming a homogenous sample powder of agricultural nuts and Al2O3, pressurizing the homogenous sample powder into a disk, heat treating or pyrolizing the disk in a nitrogen atmosphere, reacting the disk and the nitrogen atmosphere and forming AlN, and wherein the AlN is nano-structured AlN and in a pure form and in the wurtzite phase of AlN.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20190169028
    Abstract: Si3N4 nanotubes and nanorods wherein the nanotubes and nanorods of silicon nitride are pure ?-Si3N4 formed by carbothermal reduction of SiO2 from reacting agricultural husk material in heat and forming the silicon nitride nanotubes and nanorods.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 10292411
    Abstract: A method of making Aluminum Nitride (AlN) from nut shells comprising preparing powders of agricultural nuts, preparing powders of nanocrystalline Al2O3, mixing the powders and thereby forming a homogenous sample powder of agricultural nuts and Al2O3, pressurizing the homogenous sample powder into a disk, heat treating or pyrolyzing the disk in a nitrogen atmosphere, reacting the disk and the nitrogen atmosphere and forming AlN, and wherein the AlN is nano-structured AlN and in a pure form and in the wurtzite phase of AlN. A method of producing Aluminum Nitride comprising milling nuts into a powder, milling a powder of nanocrystalline Al2O3, mixing, pressing into a pellet, providing nitrogen, heating, and forming AlN. An Aluminum Nitride product from preparing powders of nuts and Al2O3, mixing, and forming a powder, pressurizing into a disk, pyrolyzing in nitrogen, and forming AlN.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 21, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 10239757
    Abstract: A method of making Si3N4 nanotubes and nanorods comprising adding agricultural husk material powder to a container, wherein the container is a covered boron nitride crucible, creating an inert atmosphere of nitrogen inside the container, applying heat, heating the agricultural husk material, and reacting the agricultural husk material and forming silicon nitride, wherein the silicon nitride is nanotubes and nanorods.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 26, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20180340241
    Abstract: A method of suppressing the Samson phase, Al3Mg2, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 29, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri
  • Publication number: 20180134569
    Abstract: A method of making Nanostructured Zinc Silicate from renewable sources comprising preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate. The nanostructured zinc silicate from renewable sources product of the process of preparing powders of husks, preparing powders of ZnO, mixing the powders of husks and the powders of ZnO and forming a homogenous sample powder, pressing the homogenous sample and forming pellets, heating the pellets and forming nanostructured zinc silicate.
    Type: Application
    Filed: October 17, 2017
    Publication date: May 17, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Publication number: 20180134560
    Abstract: A method of making Aluminum Nitride (AlN) from nut shells comprising preparing powders of agricultural nuts, preparing powders of nanocrystalline Al2O3, mixing the powders and thereby forming a homogenous sample powder of agricultural nuts and Al2O3, pressurizing the homogenous sample powder into a disk, heat treating or pyrolyzing the disk in a nitrogen atmosphere, reacting the disk and the nitrogen atmosphere and forming AlN, and wherein the AlN is nano-structured AlN and in a pure form and in the wurtzite phase of AlN. A method of producing Aluminum Nitride comprising milling nuts into a powder, milling a powder of nanocrystalline Al2O3, mixing, pressing into a pellet, providing nitrogen, heating, and forming AlN. An Aluminum Nitride product from preparing powders of nuts and Al2O3, mixing, and forming a powder, pressurizing into a disk, pyrolyzing in nitrogen, and forming AlN.
    Type: Application
    Filed: October 17, 2017
    Publication date: May 17, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 9950961
    Abstract: A method and resulting composition made by: providing boron carbide and a dopant selected from silicon, aluminum, magnesium, and beryllium; and ball milling the boron carbide with the dopant until at least one out of fifteen of the boron and/or carbon atoms of the boron carbide are substituted with the dopant.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 24, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Ramasis Goswami, Syed B. Qadri, Manoj K. Kolel-Veetil, Noam Bernstein, Raymond M. Gamache
  • Publication number: 20180040472
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Application
    Filed: September 7, 2017
    Publication date: February 8, 2018
    Inventors: Neeraj Nepal, Charles R. Eddy, JR., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Publication number: 20170362087
    Abstract: A method of making Si3N4 nanotubes and nanorods comprising adding agricultural husk material powder to a container, wherein the container is a covered boron nitride crucible, creating an inert atmosphere of nitrogen inside the container, applying heat, heating the agricultural husk material, and reacting the agricultural husk material and forming silicon nitride, wherein the silicon nitride is nanotubes and nanorods.
    Type: Application
    Filed: May 26, 2017
    Publication date: December 21, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Syed B. Qadri, Bhakta B. Rath, Edward P. Gorzkowski, III
  • Patent number: 9773666
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 26, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemmullah A. Mahadik, Syed B Qadri, Michael J. Mehl