Patents by Inventor Sylvain Clerc

Sylvain Clerc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11385288
    Abstract: A method tests at least three devices, each device including a test chain having a plurality of positions storing test data. The testing includes comparing test data in a last position of the test chain of each of the devices, and shifting test data in the test chains of each of the devices and storing a result of the comparison in a first position of the test chains of each of the devices. The comparing and the shifting and storing are repeated until all the stored test data has been compared. The at least three devices may have a same functionality and a same structure.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: July 12, 2022
    Assignee: STMICROELECTRONICS SA
    Inventors: Ricardo Gomez Gomez, Sylvain Clerc
  • Publication number: 20210278461
    Abstract: A ring oscillator includes a chain of logic components. A storage element is associated with each logic component and configured to store a state of an output of the logic component to which the storage element is associated. A first circuit counts state transitions of an output of a given logic component of the chain. A second circuit synchronizes each storage with a clock signal. A third circuit determines a number of logic components crossed by a state transition between two edges of the clock signal. This determination is made based on the counted number of state transitions and on the stored states of the outputs.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 9, 2021
    Applicant: STMicroelectronics SA
    Inventors: Ricardo GOMEZ GOMEZ, Sylvain CLERC
  • Publication number: 20210096183
    Abstract: A method tests at least three devices, each device including a test chain having a plurality of positions storing test data. The testing includes comparing test data in a last position of the test chain of each of the devices, and shifting test data in the test chains of each of the devices and storing a result of the comparison in a first position of the test chains of each of the devices. The comparing and the shifting and storing are repeated until all the stored test data has been compared. The at least three devices may have a same functionality and a same structure.
    Type: Application
    Filed: September 24, 2020
    Publication date: April 1, 2021
    Inventors: Ricardo GOMEZ GOMEZ, Sylvain CLERC
  • Patent number: 10684326
    Abstract: A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: June 16, 2020
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Clerc, Gilles Gasiot
  • Patent number: 10451670
    Abstract: A device for monitoring a critical path of an integrated circuit includes a replica of the critical path formed by sequential elements mutually separated by delay circuits that are programmable though a corresponding main multiplexer. A control circuit controls delay selections made by each main multiplexer. A sequencing module operates to sequence each sequential element using a main clock signal by delivering, in response to a main clock signal, respectively to the sequential elements, secondary clock signals that are mutually time shifted in such a manner as to take into account the propagation time inherent to the main multiplexer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 22, 2019
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Sylvain Clerc
  • Publication number: 20180321308
    Abstract: A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Clerc, Gilles Gasiot
  • Patent number: 10048317
    Abstract: A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: August 14, 2018
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Clerc, Gilles Gasiot
  • Publication number: 20170299651
    Abstract: A device for monitoring a critical path of an integrated circuit includes a replica of the critical path formed by sequential elements mutually separated by delay circuits that are programmable though a corresponding main multiplexer. A control circuit controls delay selections made by each main multiplexer. A sequencing module operates to sequence each sequential element using a main clock signal by delivering, in response to a main clock signal, respectively to the sequential elements, secondary clock signals that are mutually time shifted in such a manner as to take into account the propagation time inherent to the main multiplexer.
    Type: Application
    Filed: December 14, 2016
    Publication date: October 19, 2017
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: Sylvain Clerc
  • Patent number: 9748955
    Abstract: A radiation-hardened logic device includes a first n-channel transistor coupled by its main conducting nodes between an output node of a logic device and a supply voltage rail and a first p-channel transistor coupled by its main conducting nodes between the output node of the logic device and a ground voltage rail. The gates of the first n-channel and p-channel transistors are coupled to the output node.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 29, 2017
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Gilles Gasiot, Victor Malherbe, Sylvain Clerc
  • Publication number: 20170227602
    Abstract: A chain of flip-flops is tested by passing a reference signal through the chain. The reference signal is generated from a test pattern that is cyclically fed back at the cadence of a clock signal. The reference signal propagates through the chain of flip-flops at the cadence of the clock signal to output a test signal. A comparison is carried out at the cadence of the clock signal of the test signal and the reference signal, where the reference signal is delayed by a delay time taking into account the number of flip-flops in the chain and the length of the test pattern. An output signal is produced, at the cadence of the clock signal, as a result of the comparison.
    Type: Application
    Filed: August 23, 2016
    Publication date: August 10, 2017
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Clerc, Gilles Gasiot
  • Patent number: 9634671
    Abstract: A pulse signal generator has an input receiving an initial pulse signal having an initial period, an oscillator generating an oscillator signal, a first stage and a second stage. The first stage is synchronized with the oscillator signal and configured to deliver a secondary pulse signal having a separation between successive pulses that is representative of an integer part of a division of the initial period by an integer N. The first stage further delivers an auxiliary signal representative of a fractional part of the division and containing, for each pulse of the secondary pulse signal, an indication of a time shift to be applied to the pulse taking into account the separation. The second stage is configured to receive the successive pulses and the corresponding time shift indications and generate successive corresponding pulses of an output pulse signal.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 25, 2017
    Assignee: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Martin Cochet, Sylvain Clerc
  • Patent number: 9479168
    Abstract: A method for controlling an IC having logic cells and a clock-tree cell. Each logic cell has first and second FETs, which are pMOS and nMOS respectively. The clock-tree cell includes third and fourth FETs, which are pMOS and nMOS respectively. The clock-tree cell provides a clock signal to the logic cells. A back gate potential difference (“BGPD”) of a pMOS-FET is a difference between its source potential less its back-gate potential, and vice versa for an nMOS-FET. The method includes applying first and second back gate potential difference (BGPD) to a logic cell's first and second FETs and either applying a third BGPD to a third FET, wherein the third BGPD is positive and greater than the first BGPD applied, which is applied concurrently, or applying a fourth BGEPD to a fourth FET, wherein the fourth BGPD is positive and greater than the second BGPD that is applied concurrently.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Bastien Giraud, Fady Abouzeid, Sylvain Clerc, Jean-Philippe Noel, Philippe Roche, Yvain Thonnart
  • Patent number: 9417282
    Abstract: A method for managing operation of a logic component is provided, with the logic component including a majority vote circuit and an odd number of flip-flops equal to at least three. The method includes, following a normal operating mode of the logic component, placing a flip-flop in a test mode, and injecting a test signal into a test input of the flip-flop being tested while a logic state of the other flip-flops is frozen. A test signal output is analyzed. At the end of the test, the logic component is placed back in the normal operating mode. The majority vote circuit restores a value of the output signal from the logic component that existed prior to initiation of the test.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 16, 2016
    Assignee: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Jean-Marc Daveau, Sylvain Clerc, Philippe Roche
  • Publication number: 20160079984
    Abstract: A pulse signal generator has an input receiving an initial pulse signal having an initial period, an oscillator generating an oscillator signal, a first stage and a second stage. The first stage is synchronized with the oscillator signal and configured to deliver a secondary pulse signal having a separation between successive pulses that is representative of an integer part of a division of the initial period by an integer N. The first stage further delivers an auxiliary signal representative of a fractional part of the division and containing, for each pulse of the secondary pulse signal, an indication of a time shift to be applied to the pulse taking into account the separation. The second stage is configured to receive the successive pulses and the corresponding time shift indications and generate successive corresponding pulses of an output pulse signal.
    Type: Application
    Filed: June 9, 2015
    Publication date: March 17, 2016
    Applicant: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Martin Cochet, Sylvain Clerc
  • Publication number: 20150377962
    Abstract: A method for managing operation of a logic component is provided, with the logic component including a majority vote circuit and an odd number of flip-flops equal to at least three. The method includes, following a normal operating mode of the logic component, placing a flip-flop in a test mode, and injecting a test signal into a test input of the flip-flop being tested while a logic state of the other flip-flops is frozen. A test signal output is analyzed. At the end of the test, the logic component is placed back in the normal operating mode. The majority vote circuit restores a value of the output signal from the logic component that existed prior to initiation of the test.
    Type: Application
    Filed: March 19, 2015
    Publication date: December 31, 2015
    Inventors: Jean-Marc DAVEAU, Sylvain CLERC, Philippe ROCHE
  • Patent number: 9000840
    Abstract: An integrated with a block including first and second oppositely doped semiconductor wells. There are standard cells placed next to one another, each standard cell including first transistors and a clock tree cell encircled by standard cells. The clock tree cell has a third semiconductor well with the same doping type as the doping of the first well and second transistors. The clock tree cell also has a semiconductor strip extending continuously around the third well and having the opposite doping type to the doping of the third well to electrically isolate the third well from the first well.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 7, 2015
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, STMicroeletronics SA, STMicroeletronics (Crolles 2) SAS
    Inventors: Yvain Thonnart, Bastien Giraud, Fady Abouzeid, Sylvain Clerc, Jean-Philippe Noel
  • Patent number: 8937505
    Abstract: The invention relates to an integrated circuit comprising: a first semiconductor well (60); a plurality of standard cells (66), each standard cell comprising a first field-effect transistor in FDSOI technology comprising a first semiconductor ground plane located immediately on the first well; and a clock tree cell (30) contiguous with the standard cells, the clock tree cell comprising a second field-effect transistor in FDSOI technology, which transistor comprises a second semiconductor ground plane located immediately on the first well (60), so as to form a p-n junction with this first well. The integrated circuit comprises an electrical power supply network (51) able to apply separate electrical biases directly to the first and second ground planes.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: January 20, 2015
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Bastien Giraud, Fady Abouzeid, Sylvain Clerc, Jean-Philippe Noel, Yvain Thonnart
  • Publication number: 20140340133
    Abstract: A circuit including a data storage element; first and second input circuitry coupled respectively to first and second inputs of the data storage element and each including a plurality of components adapted to generate, as a function of an initial signal, first and second input signals respectively provided to the first and second inputs; wherein the data storage element includes a first storage node and is configured such that a voltage state stored at the first storage node is protected from a change in only one of the first and second input signals by being determined by the conduction state of a first transistor coupled to the first storage node and controlled based on the first input signal and by the conduction state of a second transistor coupled to the first storage node and controlled based on the second input signal.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 20, 2014
    Applicants: STMicroelectronics (Crolles 2) SAS, STMicroelectronics Pvt. Ltd.
    Inventors: Gilles Gasiot, Sylvain Clerc, Junaid Yousuf, Maximilien Glorieux
  • Patent number: 8867264
    Abstract: A device and a method for controlling an SRAM-type device, including: a bistable circuit and two switching circuits respectively connecting two access terminals of the bistable circuit to two complementary bit lines in a first direction, each switching circuit including a first switch and a second switch in series between one of the bit lines and one of the access terminals, the control terminal of the second switch being connected to a word control line in the first direction; and a third switch between the midpoint of the series connection and a terminal of application of a reference potential, a control terminal of the third switch being connected to the other one of the access terminals.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: October 21, 2014
    Assignees: STMicroelectronics S.A., STMicroelectronics (Crolles 2) SAS
    Inventors: Fady Abouzeid, Sylvain Clerc
  • Publication number: 20140292374
    Abstract: A method for controlling an IC having logic cells and a clock-tree cell. Each logic cell has first and second FETs, which are pMOS and nMOS respectively. The clock-tree cell includes third and fourth FETs, which are pMOS and nMOS respectively. The clock-tree cell provides a clock signal to the logic cells. A back gate potential difference (“BGPD”) of a pMOS-FET is a difference between its source potential less its back-gate potential, and vice versa for an nMOS-FET. The method includes applying first and second back gate potential difference (BGPD) to a logic cell's first and second FETs and either applying a third BGPD to a third FET, wherein the third BGPD is positive and greater than the first BGPD applied, which is applied concurrently, or applying a fourth BGEPD to a fourth FET, wherein the fourth BGPD is positive and greater than the second BGPD that is applied concurrently.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Inventors: Bastien Giraud, Fady Abouzeid, Sylvain Clerc, Jean-Philippe Noel, Philippe Roche, Yvain Thonnart