Patents by Inventor Szu-Lin Cheng
Szu-Lin Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10777692Abstract: A photo-detecting apparatus includes a semiconductor substrate. A first germanium-based light absorption material is supported by the semiconductor substrate and configured to absorb a first optical signal having a first wavelength greater than 800 nm. A first metal line is electrically coupled to a first region of the first germanium-based light absorption material. A second metal line is electrically coupled to a second region of the first germanium-based light absorption material. The first region is un-doped or doped with a first type of dopants. The second region is doped with a second type of dopants. The first metal line is configured to control an amount of a first type of photo-generated carriers generated inside the first germanium-based light absorption material to be collected by the second region.Type: GrantFiled: February 22, 2019Date of Patent: September 15, 2020Assignee: Artilux, Inc.Inventors: Szu-Lin Cheng, Chien-Yu Chen, Shu-Lu Chen, Yun-Chung Na, Ming-Jay Yang, Han-Din Liu, Che-Fu Liang
-
Patent number: 10770504Abstract: An optical sensor including a semiconductor substrate; a first light absorption region formed in the semiconductor substrate, the first light absorption region configured to absorb photons at a first wavelength range and to generate photo-carriers from the absorbed photons; a second light absorption region formed on the first light absorption region, the second light absorption region configured to absorb photons at a second wavelength range and to generate photo-carriers from the absorbed photons; and a sensor control signal coupled to the second light absorption region, the sensor control signal configured to provide at least a first control level and a second control level.Type: GrantFiled: December 3, 2018Date of Patent: September 8, 2020Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
-
Publication number: 20200274017Abstract: An optoelectronic device includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type different from the first conductivity type, and a photoelectric conversion region between the first semiconductor region and the second semiconductor region. The photoelectric conversion region is of a third conductivity type the same as the first conductivity type.Type: ApplicationFiled: February 21, 2020Publication date: August 27, 2020Inventors: Yun-Chung Na, Yen-Cheng Lu, Yu-Hsuan Liu, Chung-Chih Lin, Tsung-Ting Wu, Szu-Lin Cheng
-
Patent number: 10756127Abstract: A method for fabricating an image sensor array having a first group of photodiodes for detecting light at visible wavelengths a second group of photodiodes for detecting light at infrared or near-infrared wavelengths, the method including growing a germanium-silicon layer on a semiconductor donor wafer; defining pixels of the image sensor array on the germanium-silicon layer; defining a first interconnect layer on the germanium-silicon layer, wherein the interconnect layer includes a plurality of interconnects coupled to the first group of photodiodes and the second group of photodiodes; defining integrated circuitry for controlling the pixels of the image sensor array on a semiconductor carrier wafer; defining a second interconnect layer on the semiconductor carrier wafer, wherein the second interconnect layer includes a plurality of interconnects coupled to the integrated circuitry; and bonding the first interconnect layer with the second interconnect layer.Type: GrantFiled: September 22, 2017Date of Patent: August 25, 2020Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
-
Patent number: 10739443Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal. The one or more first switches include a first trench located between the first p-doped region and the first n-doped region. The one or more second switches include a second trench located between the second p-doped region and the second n-doped region.Type: GrantFiled: February 28, 2018Date of Patent: August 11, 2020Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
-
Patent number: 10741598Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region configured to absorb photons and to generate photo-carriers from the absorbed photons; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal; and a counter-doped region formed in a first portion of the first light absorption region, the counter-doped region including a first dopant and having a first net carrier concentration lower than a second net carrier concentration of a second portion of the first light absorption region.Type: GrantFiled: February 28, 2018Date of Patent: August 11, 2020Assignee: Atrilux, Inc.Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
-
Patent number: 10734533Abstract: Examples of the various techniques introduced here include, but not limited to, a mesa height adjustment approach during shallow trench isolation formation, a transistor via first approach, and a multiple absorption layer approach. As described further below, the techniques introduced herein include a variety of aspects that can individually and/or collectively resolve or mitigate one or more traditional limitations involved with manufacturing PDs and transistors on the same substrate, such as above discussed reliability, performance, and process temperature issues.Type: GrantFiled: March 28, 2017Date of Patent: August 4, 2020Assignee: Artilux, Inc.Inventors: Szu-Lin Cheng, Shu-Lu Chen
-
Publication number: 20200217715Abstract: A photodetecting device for detecting different wavelengths includes a first photodetecting component including a substrate and a second photodetecting component including second absorption region. The substrate includes a first absorption region configured to absorb photons having a first peak wavelength and to generate first photo-carriers. The second absorption region is supported by the substrate and configured to absorb photons having a second peak wavelength and to generate second photo-carriers. The first absorption region and the second absorption region are overlapped along a vertical direction.Type: ApplicationFiled: January 6, 2020Publication date: July 9, 2020Inventors: YEN-CHENG LU, YUN-CHUNG NA, SHU-LU CHEN, CHIEN-YU CHEN, SZU-LIN CHENG, CHUNG-CHIH LIN, YU-HSUAN LIU
-
Patent number: 10707260Abstract: A circuit that includes: a photodiode configured to absorb photons and to generate photo-carriers from the absorbed photons; a first MOSFET transistor that includes: a first channel terminal coupled to a first terminal of the photodiode and configured to collect a portion of the photo-carriers generated by the photodiode; a second channel terminal; and a gate terminal coupled to a first control voltage source; a first readout circuit configured to output a first readout voltage; a second readout circuit configured to output a second readout voltage; and a current-steering circuit configured to steer the photo-carriers generated by the photodiode to one or both of the first readout circuit and the second readout circuit.Type: GrantFiled: April 12, 2018Date of Patent: July 7, 2020Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang, Yuan-Fu Lyu, Chien-Lung Chen, Chung-Chih Lin, Kuan-Chen Chu
-
Publication number: 20200194480Abstract: A semiconductor device includes a germanium region, a doped region in the germanium region, wherein the doped region is of a first conductivity type; and a counter-doped region in the germanium region and adjacent to the doped region, wherein the counter-doped region is of a second conductivity type different from the first conductivity type.Type: ApplicationFiled: December 10, 2019Publication date: June 18, 2020Inventors: Yun-Chung Na, Yen-Cheng Lu, Ming-Jay Yang, Szu-Lin Cheng
-
Publication number: 20200194490Abstract: A method for fabricating an optical sensor includes: forming, over a substrate, a first material layer comprising a first alloy of germanium and silicon having a first germanium composition; forming, over the first material layer, a graded material layer comprising germanium and silicon; and forming, over the graded material layer, a second material layer comprising a second alloy of germanium and silicon having a second germanium composition. The first germanium composition is lower than the second germanium composition and a germanium composition of the graded material layer is between the first germanium composition and the second germanium composition and varies along a direction perpendicular to the substrate.Type: ApplicationFiled: February 26, 2020Publication date: June 18, 2020Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen
-
Patent number: 10685994Abstract: A method for fabricating an image sensor array having a first group of photodiodes for detecting light at visible wavelengths a second group of photodiodes for detecting light at infrared or near-infrared wavelengths, the method including forming a germanium-silicon layer for the second group of photodiodes on a first semiconductor donor wafer; defining a first interconnect layer on the germanium-silicon layer; defining integrated circuitry for controlling pixels of the image sensor array on a semiconductor carrier wafer; defining a second interconnect layer on the semiconductor carrier wafer; bonding the first interconnect layer with the second interconnect layer; defining the pixels of an image sensor array on a second semiconductor donor wafer; defining a third interconnect layer on the image sensor array; and bonding the third interconnect layer with the germanium-silicon layer.Type: GrantFiled: May 17, 2018Date of Patent: June 16, 2020Assignee: ARTILUX, INC.Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang
-
Publication number: 20200161364Abstract: A circuit that includes: a photodiode configured to absorb photons and to generate photo-carriers from the absorbed photons; a first MOSFET transistor that includes: a first channel terminal coupled to a first terminal of the photodiode and configured to collect a portion of the photo-carriers generated by the photodiode; a second channel terminal; and a gate terminal coupled to a first control voltage source; a first readout circuit configured to output a first readout voltage; a second readout circuit configured to output a second readout voltage; and a current-steering circuit configured to steer the photo-carriers generated by the photodiode to one or both of the first readout circuit and the second readout circuit.Type: ApplicationFiled: January 24, 2020Publication date: May 21, 2020Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen, Che-Fu Liang, Yuan-Fu Lyu, Chien-Lung Chen, Chung-Chih Lin, Kuan-Chen Chu
-
Patent number: 10644187Abstract: Structures and techniques introduced here enable the design and fabrication of photodetectors (PDs) and/or other electronic circuits using typical semiconductor device manufacturing technologies meanwhile reducing the adverse impacts on PDs' performance. Examples of the various structures and techniques introduced here include, but not limited to, a pre-PD homogeneous wafer bonding technique, a pre-PD heterogeneous wafer bonding technique, a post-PD wafer bonding technique, their combinations, and a number of mirror equipped PD structures. With the introduced structures and techniques, it is possible to implement PDs using typical direct growth material epitaxy technology while reducing the adverse impact of the defect layer at the material interface caused by lattice mismatch.Type: GrantFiled: December 13, 2018Date of Patent: May 5, 2020Assignee: Artilux, Inc.Inventors: Chien-Yu Chen, Szu-Lin Cheng, Chieh-Ting Lin, Yu-Hsuan Liu, Ming-Jay Yang, Shu-Lu Chen, Tsung-Ting Wu, Chia-Peng Lin
-
Publication number: 20200132927Abstract: A waveguide structure includes a first surface having a first width, a second surface having a second width, the second surface being opposite to the first surface, and a sidewall surface connecting the first surface and the second surface. The first width is greater than the second width.Type: ApplicationFiled: October 24, 2019Publication date: April 30, 2020Inventors: SZU-LIN CHENG, CHIEN-YU CHEN, HAN-DIN LIU, CHIA-PENG LIN, CHUNG-CHIH LIN, YUN-CHUNG NA, PIN-TSO LIN, TSUNG-TING WU, YU-HSUAN LIU, KUAN-CHEN CHU
-
Patent number: 10622390Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region including germanium and configured to absorb photons and to generate photo-carriers from the absorbed photons; a first layer supported by at least a portion of the semiconductor substrate and the first light absorption region, the first layer being different from the first light absorption region; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, wherein the second control signal is different from the first control signal.Type: GrantFiled: February 28, 2018Date of Patent: April 14, 2020Assignee: Artilux, Inc.Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
-
Patent number: 10615219Abstract: A method for fabricating an optical sensor includes: forming, over a substrate, a first material layer comprising a first alloy of germanium and silicon having a first germanium composition; forming, over the first material layer, a graded material layer comprising germanium and silicon; and forming, over the graded material layer, a second material layer comprising a second alloy of germanium and silicon having a second germanium composition. The first germanium composition is lower than the second germanium composition and a germanium composition of the graded material layer is between the first germanium composition and the second germanium composition and varies along a direction perpendicular to the substrate.Type: GrantFiled: May 16, 2018Date of Patent: April 7, 2020Assignee: ARTILUX, INC.Inventors: Yun-Chung Na, Szu-Lin Cheng, Shu-Lu Chen, Han-Din Liu, Hui-Wen Chen
-
Publication number: 20200075793Abstract: Structures and techniques introduced here enable the design and fabrication of photodetectors (PDs) and/or other electronic circuits using typical semiconductor device manufacturing technologies meanwhile reducing the adverse impacts on PDs' performance. Examples of the various structures and techniques introduced here include, but not limited to, a pre-PD homogeneous wafer bonding technique, a pre-PD heterogeneous wafer bonding technique, a post-PD wafer bonding technique, their combinations, and a number of mirror equipped PD structures. With the introduced structures and techniques, it is possible to implement PDs using typical direct growth material epitaxy technology while reducing the adverse impact of the defect layer at the material interface caused by lattice mismatch.Type: ApplicationFiled: November 6, 2019Publication date: March 5, 2020Inventors: Szu-Lin Cheng, Han-Din Liu, Shu-Lu Chen, Yun-Chung Na, Hui-Wen Chen
-
Publication number: 20200052016Abstract: An optical apparatus including a semiconductor substrate; a first light absorption region supported by the semiconductor substrate, the first light absorption region including germanium and configured to absorb photons and to generate photo-carriers from the absorbed photons; a first layer supported by at least a portion of the semiconductor substrate and the first light absorption region, the first layer being different from the first light absorption region; one or more first switches controlled by a first control signal, the one or more first switches configured to collect at least a portion of the photo-carriers based on the first control signal; and one or more second switches controlled by a second control signal, the one or more second switches configured to collect at least a portion of the photo-carriers based on the second control signal, wherein the second control signal is different from the first control signal.Type: ApplicationFiled: October 18, 2019Publication date: February 13, 2020Inventors: Yun-Chung Na, Che-Fu Liang, Szu-Lin Cheng, Shu-Lu Chen, Kuan-Chen Chu, Chung-Chih Lin, Han-Din Liu
-
Patent number: 10529886Abstract: Structures and techniques introduced here enable the design and fabrication of photodetectors (PDs) and/or other electronic circuits using typical semiconductor device manufacturing technologies meanwhile reducing the adverse impacts on PDs' performance. Examples of the various structures and techniques introduced here include, but not limited to, a pre-PD homogeneous wafer bonding technique, a pre-PD heterogeneous wafer bonding technique, a post-PD wafer bonding technique, their combinations, and a number of mirror equipped PD structures. With the introduced structures and techniques, it is possible to implement PDs using typical direct growth material epitaxy technology while reducing the adverse impact of the defect layer at the material interface caused by lattice mismatch.Type: GrantFiled: June 1, 2018Date of Patent: January 7, 2020Assignee: Artilux, Inc.Inventors: Szu-Lin Cheng, Han-Din Liu, Shu-Lu Chen, Yun-Chung Na, Hui-Wen Chen