Patents by Inventor T. Tait Robb

T. Tait Robb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150320516
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 12, 2015
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Patent number: 9089380
    Abstract: Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 28, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Zachary B Suttin, Bruce Berckmans, T. Tait Robb
  • Publication number: 20150190209
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Application
    Filed: March 20, 2015
    Publication date: July 9, 2015
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Publication number: 20150173866
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Patent number: 9011146
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: April 21, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Publication number: 20150104756
    Abstract: A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slidably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: T. Tait Robb, Stephen M. Herrington, Miguel G. Montero, Ralph E. Goodman, Dan P. Rogers, John J. Bellanca, Zachary B. Suttin
  • Patent number: 8998614
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 7, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Bruce Berckman, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Patent number: 8967999
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: March 3, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Patent number: 8944816
    Abstract: A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slidably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: February 3, 2015
    Assignee: Biomet 3i, LLC
    Inventors: T. Tait Robb, Stephen M. Herrington, Miguel Montero, Ralph E. Goodman, Dan P. Rogers, John J. Bellanca, Zachary B. Suttin
  • Patent number: 8944818
    Abstract: A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slideably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: February 3, 2015
    Assignee: Biomet 3i, LLC
    Inventors: T. Tait Robb, Stephen M. Herrington, Miguel Montero, Ralph E. Goodman, Dan P. Rogers, John J. Bellanca, Zachary B. Suttin
  • Patent number: 8777612
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 15, 2014
    Assignee: Biomet 3i, LLC
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Patent number: 8690574
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 8, 2014
    Assignee: Biomet 3i, LLC
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Patent number: 8460297
    Abstract: A drill assembly for creating a bore in living bone comprises a drill bit, a collet-nose drill stop, a collet sleeve, a collet body, a concealment collar, a retaining spring, and a plurality of retaining balls. The drill bit inserts into the collet body and is retained in the collet body by the plurality of retaining balls. The collet-nose drill stop extends over a portion of the drill bit to limit the depth of the bore formed by the drill bit. The collet body has a drive shank and a connection region. The connection region of the collet body is adapted to receive a portion of the drill bit. The plurality of retaining balls are adapted to longitudinally secure the drill bit to the collet body.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: June 11, 2013
    Assignee: Biomet 3i, LLC
    Inventors: Michael B. Watlington, T. Tait Robb
  • Publication number: 20120295223
    Abstract: A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slidably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: Biomet 3i, LLC
    Inventors: T. Tait Robb, Stephen M. Herrington, Miguel Montero, Ralph E. Goodman, Dan P. Rogers, John J. Bellanca, Zachary B. Suttin
  • Publication number: 20120295226
    Abstract: A lower region of a temporary abutment includes an anti-rotational feature for non-rotationally mating with a dental implant. An upper region of the temporary abutment includes a first anti-rotational structure and at least one retention groove. A top surface of the temporary abutment includes one or more informational markers that provide information concerning the dental implant. A temporary abutment cap is configured to be coupled to the upper region of the temporary abutment. The temporary abutment cap has at least one projection configured to mate with the at least one retention groove of the temporary abutment. The temporary abutment cap has a second anti-rotational structure that is configured to slideably engage the first anti-rotational structure of the temporary abutment. The temporary abutment cap is configured to be coupled with a temporary prosthesis such that the temporary prosthesis and the temporary abutment cap are removable from the temporary abutment.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: Biomet 3i, LLC
    Inventors: T. Tait Robb, Stephen M. Herrington, Miguel Montero, Ralph E. Goodman, Dan P. Rogers, John J. Bellanca, Zachary B. Suttin
  • Publication number: 20120288828
    Abstract: A titanium 6 Al/4V alloy is provided with a surface topography that is similar to the Osseotite® surface produced on commercially pure titanium. Native oxide is removed from the Ti 6Al/4V alloy, followed by contacting the metal at ambient temperature with an aqueous hydrochloric acid solution containing a relatively small amount of hydrofluoric acid.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 15, 2012
    Applicant: Biomet 3i, LLC
    Inventors: T. Tait Robb, Bruce Berckmans, III, Ross W. Towse, Robert L. Mayfield
  • Publication number: 20120283866
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: Biomet 3i, LLC
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Publication number: 20120259597
    Abstract: Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable.
    Type: Application
    Filed: June 22, 2012
    Publication date: October 11, 2012
    Applicant: Biomet 3i, Inc.
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, T. Tait Robb
  • Patent number: 8257083
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 4, 2012
    Assignee: Biomet 3i, LLC
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Patent number: 8251700
    Abstract: A titanium 6 A1/4V alloy is provided with a surface topography that is similar to the Osseotite® surface produced on commercially pure titanium. Native oxide is removed from the Ti 6A1/4V alloy, followed by contacting the metal at ambient temperature with an aqueous hydrochloric acid solution containing a relatively small amount of hydrofluoric acid.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: August 28, 2012
    Assignee: Biomet 3i, LLC
    Inventors: T. Tait Robb, Bruce Berckmans, III, Ross W. Towse, Robert L. Mayfield