Patents by Inventor T. Tait Robb

T. Tait Robb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8206153
    Abstract: Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: June 26, 2012
    Assignee: Biomet 3i, Inc.
    Inventors: Zachary B. Suttin, Bruce Berckmans, III, T. Tait Robb
  • Publication number: 20110306008
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 15, 2011
    Applicant: Biomet 3i, LLC
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Publication number: 20110306009
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 15, 2011
    Applicant: Biomet 3i, LLC
    Inventors: Zachary B. Suttin, T.Tait Robb, Bruce Berckmans, III, Ralph E. Goodman, Theodore M. Powell
  • Patent number: 8011925
    Abstract: A method of manufacturing a rapid prototype overmold for locating a dental implant analog in a modified stone model for use in creating a tooth prosthesis is provided. An impression of a mouth having a first installation site that has a dental implant and a gingival healing abutment with at least one informational marker installed is taken. A stone model based on the impression is prepared. The model is scanned. A three-dimensional computer model of the installation site on a CAD program using data from the scan is created. The at least one informational marker is determined to gather information about the location of the dental implant. Abutment dimensional information based on the three-dimensional image and the at least one informational marker is developed. Overmold rapid prototype dimensional information based on the three-dimensional image is developed. The overmold rapid prototype adapted to fit over the modified stone model is fabricated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: September 6, 2011
    Assignee: Biomet 3i, LLC
    Inventors: Theodore M. Powell, Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb
  • Publication number: 20110200970
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 18, 2011
    Applicant: Biomet 3i, LLC
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Publication number: 20100105008
    Abstract: A method of manufacturing a rapid prototype overmold for locating a dental implant analog in a modified stone model for use in creating a tooth prosthesis is provided. An impression of a mouth having a first installation site that has a dental implant and a gingival healing abutment with at least one informational marker installed is taken. A stone model based on the impression is prepared. The model is scanned. A three-dimensional computer model of the installation site on a CAD program using data from the scan is created. The at least one informational marker is determined to gather information about the location of the dental implant. Abutment dimensional information based on the three-dimensional image and the at least one informational marker is developed. Overmold rapid prototype dimensional information based on the three-dimensional image is developed. The overmold rapid prototype adapted to fit over the modified stone model is fabricated.
    Type: Application
    Filed: December 30, 2009
    Publication date: April 29, 2010
    Applicant: Biomet 3i, LLC
    Inventors: Theodore M. Powell, Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb
  • Patent number: 7661956
    Abstract: A method of manufacturing a rapid prototype overmold for locating a dental implant analog in a modified stone model for use in creating a tooth prosthesis is provided. An impression of a mouth having a first installation site that has a dental implant and a gingival healing abutment with at least one informational marker installed is taken. A stone model based on the impression is prepared. The model is scanned. A three-dimensional computer model of the installation site on a CAD program using data from the scan is created. The at least one informational marker is determined to gather information about the location of the dental implant. Abutment dimensional information based on the three-dimensional image and the at least one informational marker is developed. Overmold rapid prototype dimensional information based on the three-dimensional image is developed. The overmold rapid prototype adapted to fit over the modified stone model is fabricated.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: February 16, 2010
    Assignee: Biomet 3i, LLC
    Inventors: Theodore M. Powell, Bruce Berckmans, III, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb
  • Publication number: 20090130630
    Abstract: The present invention is a surgical guide for guiding the insertion of a dental implant into a desired location in a patient's mouth. The implant includes a non-rotational structure. The surgical guide includes a structure and a master tube. The structure has a negative impression surface to be fitted on and placed over gingival tissue, bone, and/or teeth in the patient's mouth. The structure includes an opening through which the dental implant is placed. The master tube is located at the opening. The master tube includes indicia for alignment with the non-rotational structure on the implant such that the non-rotational structure of the implant is at a known angular orientation with respect to the master tube. The present invention includes kits of various components used with the surgical guide and with the dental surgery using the surgical guide.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 21, 2009
    Inventors: Zachary B. Suttin, T. Tait Robb, Bruce Berckmans, III, Ralph E. Goodman
  • Publication number: 20080286722
    Abstract: Methods of selecting or designing an implant to be used in a patient are provided. A CT scan of a patient's mouth is performed. A 3D CAD model of the patient's mouth is created utilizing data generated by the CT scan. Properties of the patient's mouth are determined based upon CT scan data and assigned to the 3D CAD model. A desired location for an implant is selected. A FEA simulation is performed on the 3D CAD model to choose an implant or to design an implant that optimizes a selected variable.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 20, 2008
    Inventors: Bruce Berckmans, III, Zachary B. Suttin, T. Tait Robb
  • Publication number: 20080187886
    Abstract: An implant for placement into bone and method for forming the same. The method provides an implant that has an elongated body that has a distal end and a proximal end. The method also provides a thread-cutting tool. The process engages the elongated body with the thread-cutting tool. The thread-cutting tool contacts the elongated body at the proximal end and removes material from the implant to form a thread and a tapered portion near the distal end of the elongated body. The thread-cutting tool forms the thread and a generally-cylindrical portion between the tapered portion and the proximal end of the elongated body. The thread has first crest width in the tapered region and a second crest width in the generally-cylindrical portion. The thread-cutting tool contacts the thread in the generally-cylindrical portion of the elongated body. The thread-cutting tool makes a second pass to reduce the second crest width.
    Type: Application
    Filed: December 7, 2007
    Publication date: August 7, 2008
    Inventor: T. Tait Robb
  • Publication number: 20080167653
    Abstract: A drill assembly for creating a bore in living bone comprises a drill bit, a collet-nose drill stop, a collet sleeve, a collet body, a concealment collar, a retaining spring, and a plurality of retaining balls. The drill bit inserts into the collet body and is retained in the collet body by the plurality of retaining balls. The collet-nose drill stop extends over a portion of the drill bit to limit the depth of the bore formed by the drill bit. The collet body has a drive shank and a connection region. The connection region of the collet body is adapted to receive a portion of the drill bit. The plurality of retaining balls are adapted to longitudinally secure the drill bit to the collet body.
    Type: Application
    Filed: December 13, 2007
    Publication date: July 10, 2008
    Inventors: Michael B. Watlington, T. Tait Robb
  • Publication number: 20080153067
    Abstract: A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
    Type: Application
    Filed: February 22, 2008
    Publication date: June 26, 2008
    Inventors: Bruce Berckmans, Zachary B. Suttin, Dan P. Rogers, T. Tait Robb, Alexis C. Goolik
  • Publication number: 20070298377
    Abstract: A dental implant assembly is disclosed. The dental implant assembly comprises an implant. The dental implant assembly further comprises an abutment coupled to a top portion of the implant. The dental implant assembly further comprises a screw for securing the abutment to the implant. The dental implant assembly further comprises silver nanoparticles positioned on at least one interior surface of at least one of the implant and the abutment.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 27, 2007
    Inventors: James Kenealy, Bruce Berckmans, T. Tait Robb
  • Publication number: 20040265780
    Abstract: A titanium 6 A1/4V alloy is provided with a surface topography that is similar to the Osseotite® surface produced on commercially pure titanium. Native oxide is removed from the Ti 6A1/4V alloy, followed by contacting the metal at ambient temperature with an aqueous hydrochloric acid solution containing a relatively small amount of hydrofluoric acid.
    Type: Application
    Filed: May 12, 2004
    Publication date: December 30, 2004
    Inventors: T. Tait Robb, Bruce Berckmans, Ross W. Towse, Robert L. Mayfield