Patents by Inventor T. Wu

T. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10816463
    Abstract: A laser spectrometer includes a tunable laser assembly, a periodically-poled nonlinear optical crystal, with parallel polished input and output end faces, and a mechanism for controlling an entrance location of a pump input beam of the tunable laser on the input end face of the periodically-poled nonlinear optical crystal, such that the pump input beam traverses different grating periods of the periodically-poled nonlinear optical crystal.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: October 27, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Kenji Numata, Haris Riris, Stewart T. Wu, Xiaoli Sun
  • Publication number: 20200156759
    Abstract: An example aircraft wing includes a skin, a composite shear tie, a stringer base charge overlaying the skin, and a stringer overlaying the stringer base charge. The composite shear tie includes a shear-tie web, a first shear-tie flange extending from a first side of the shear-tie web, a second shear-tie flange extending from a second side of the shear-tie web, and a first shear-tie tab extending from an end of the first side of the shear-tie web. The stringer includes a stringer web, a first stringer flange extending from a first side of the stringer web, and a second stringer flange extending from a second side of the stringer web. The first stringer flange is stitched to and integrated with the stringer base charge and the skin. Further, the first shear-tie flange is stitched to and integrated with the first stringer flange.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Kim A. Linton, Jaime E. Baraja, Hsi-Yung T. Wu
  • Publication number: 20200148326
    Abstract: An example aircraft wing includes a first skin, a second skin opposite to the first skin, and a composite spar. The composite spar includes a double-flanged spar cap, a single-flanged spar cap, a spar web connecting the double-flanged spar cap and the single-flanged spar cap, and a tear strap. The double-flanged spar cap includes an inward-facing flange and a first outward-facing flange, and the inward-facing flange and the first outward-facing flange are integrated with the first skin during a co-curing process. The single-flanged spar cap includes a second outward-facing flange that is attached to the second skin. The tear strap is stitched to an inner side of the spar web along at least a portion of a length of the composite spar.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 14, 2020
    Inventors: Kim A. Linton, James P. Dobberfuhl, Jaime E. Baraja, Hsi-Yung T. Wu
  • Publication number: 20200129907
    Abstract: An air filter media (10) including a pleated fibrous filtration web (8) with a first major side (2) that includes at least one sorbent-loaded area (26) in which sorbent particles (14) are present on a first major surface (25) of the pleated fibrous filtration web (8), at least some of the sorbent particles (14) being post-pleat-deposited sorbent particles.
    Type: Application
    Filed: April 18, 2017
    Publication date: April 30, 2020
    Inventors: Andrew R. Fox, Himanshu Jasuja, Mikhail A. Belkin, Bryan L. Gerhardt, Glen O. Gregerson, Gerry A. Hoffdahl, Jonathan M. Lise, Tien T. Wu
  • Patent number: 10627536
    Abstract: A method for making gain compensated electromagnetic logging measurements of a subterranean formation includes rotating an electromagnetic logging tool in a subterranean wellbore. The logging tool includes a transmitter having at least one transmitting antenna axially spaced apart from a receiver having at least one receiving antenna. Electromagnetic waves are transmitted into the subterranean wellbore using the at least one transmitting antenna. Voltage measurements corresponding to the transmitted electromagnetic waves are received at the receiving antenna. The voltage measurements are processed to compute real and imaginary directional resistivity measurement quantities.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: April 21, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Helen Xiaoyan Zhong, Mark T. Frey, Peter T. Wu
  • Patent number: 10549344
    Abstract: A liquid composition includes copper particles, an organic acid, and a solvent. The copper particle has a particle size of 0.5 ?m˜30 ?m which falls in a micron scale. The liquid composition performs reaction sintering by redox reactions taken place between the copper particles and an organic acid solution at a low temperature of 150° C. in order to produce a dense copper layer and improve the conventional micron-scale copper particles that requires a protective atmosphere for the high-temperature sintering before achieving the required densification. This liquid composition also prevents an excessive oxidation of the nano copper particles during the low-temperature sintering process and a failure of the dense sintering. Due to the agglomeration of nano copper particles, some areas have to be sintered first, so that the sintered products have a good uniformity of tissue and a low resistance below 0.04 ohm per square (?/?).
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: February 4, 2020
    Assignee: SHENMAO TECHNOLOGY INC.
    Inventors: Chang-Meng Wang, Hsiang-Chuan Chen, Ruei-Ying Sheng, Chen-Yi Chen, Albert T. Wu, Chih-Hao Chen, Yuan-Heng Zhong
  • Patent number: 10508535
    Abstract: A method for drilling a wellbore includes drilling a well along a path substantially along a bedding direction of a selected subsurface formation having at least one substantially vertical fracture therein. A direction of the at least one substantially vertical fracture is determined with respect to a direction of the prior to drilling therethrough. A direction of the path is adjusted so that the well will intersect the at least one substantially vertical fracture substantially perpendicularly to the direction.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: December 17, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Peter T. Wu
  • Patent number: 10408965
    Abstract: A method for logging a formation or sample includes obtaining a plurality of multiaxial conductivity measurements from the formation or sample. A horizontal resistivity measurement, a dip measurement and a dip azimuth measurement are derived from the plurality of multiaxial conductivity measurements. A sharp vertical resistivity measurement is derived from a subset of the plurality of multiaxial conductivity measurements.
    Type: Grant
    Filed: September 9, 2012
    Date of Patent: September 10, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Peter T. Wu, Gong Li Wang, Thomas D. Barber, Charles A. Johnson
  • Patent number: 10386528
    Abstract: A method for making downhole electromagnetic logging measurements includes using an electromagnetic measurement tool to acquire the measurements while rotating in a subterranean wellbore. Received electromagnetic waves are processed to obtain harmonic voltage coefficients, ratios of which are in turn further processed to compute gain compensated measurement quantities. The gain compensated measurement quantities are further processed to compute at least one of an apparent formation azimuth of the formation through which the wellbore traverses, an apparent tool eccentering azimuth, and an eccentering distance of the logging tool in the wellbore.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 20, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Peter T. Wu, Mark T. Frey
  • Patent number: 10371851
    Abstract: A method for characterizing fractures traversing a wellbore includes input to a computer multiaxial electromagnetic induction measurements corresponding to measurements made along two mutually orthogonal magnetic dipole moment axes perpendicular to an axis of the wellbore. The measurements correspond to at least one receiver spacing from a transmitter. The measurements represent induced voltage in a receiver having a same dipole moment direction as a dipole moment direction of a transmitter. A first derivative with respect to wellbore depth of the multiaxial electromagnetic induction measurements is calculated. At least one peak and an amplitude thereof of the first derivatives is calculated. The peak and the amplitude are used to determine a location and an aperture of at least one fracture traversing the wellbore.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 6, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Peter T. Wu, Samer Alatrach
  • Patent number: 10348052
    Abstract: The present invention relates to a laser system and method which enables fast, accurate laser frequency tuning. In particular, the present invention includes only one laser and only one absolute frequency locking loop to perform the same fast frequency tuning than previous seed laser systems.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 9, 2019
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Kenji Numata, Haris Riris, Stewart T. Wu
  • Patent number: 10345476
    Abstract: A method for identifying fractures from measurements made by a multi-axial electromagnetic induction tool in a wellbore traversing subsurface formations includes determining a value of a fracture orientation indicator from in line components of the multi-axial electromagnetic induction measurements made transverse to a tool axis, and parallel to the tool axis. The tool axis is substantially parallel to a bedding plane of the subsurface formations. A value of a vertical fracture indicator is determined using the in line components of the multi-axial electromagnetic induction measurements made transverse to the tool axis, and parallel to the tool axis.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: July 9, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Peter T. Wu
  • Publication number: 20190054525
    Abstract: A liquid composition includes copper particles, an organic acid, and a solvent. The copper particle has a particle size of 0.5 ?m˜30 ?m which falls in a micron scale. The liquid composition performs reaction sintering by redox reactions taken place between the copper particles and an organic acid solution at a low temperature of 150° C. in order to produce a dense copper layer and improve the conventional micron-scale copper particles that requires a protective atmosphere for the high-temperature sintering before achieving the required densification. This liquid composition also prevents an excessive oxidation of the nano copper particles during the low-temperature sintering process and a failure of the dense sintering. Due to the agglomeration of nano copper particles, some areas have to be sintered first, so that the sintered products have a good uniformity of tissue and a low resistance below 0.04 ohm per square (?/?).
    Type: Application
    Filed: October 31, 2017
    Publication date: February 21, 2019
    Inventors: CHANG-MENG WANG, HSIANG-CHUAN CHEN, RUEI-YING SHENG, CHEN-YI CHEN, ALBERT T. WU, CHIH-HAO CHEN, YUAN-HENG ZHONG
  • Publication number: 20180335543
    Abstract: A two-step inversion method for computing multi-layer subterranean formation properties includes processing gain compensated electromagnetic measurement quantities using a first inversion to compute a corresponding set of borehole corrected gain compensated measurement quantities. The first inversion includes a mathematical model of the tool and the borehole in a uniform, anisotropic formation. The set of borehole corrected gain compensated measurement quantities are then processed using a second inversion to compute multi-layer anisotropic formation properties. The second inversion includes a 1D inversion employing a point dipole model and a multi-layer formation model.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 22, 2018
    Applicant: Schlumberger Technology Corporation
    Inventor: Peter T. Wu
  • Publication number: 20180321413
    Abstract: A method for making gain compensated electromagnetic logging measurements of a subterranean formation includes rotating an electromagnetic logging tool in a subterranean wellbore. The logging tool includes a transmitter having at least one transmitting antenna axially spaced apart from a receiver having at least one receiving antenna. Electromagnetic waves are transmitted into the subterranean wellbore using the at least one transmitting antenna. Voltage measurements corresponding to the transmitted electromagnetic waves are received at the receiving antenna. The voltage measurements are processed to compute real and imaginary directional resistivity measurement quantities.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 8, 2018
    Inventors: Helen Xiaoyan Zhong, Mark T. Frey, Peter T. Wu
  • Publication number: 20180321414
    Abstract: A method for making downhole electromagnetic logging measurements of a subterranean formation is disclosed. An electromagnetic logging tool is rotated in a subterranean wellbore. The tool includes a transmitter axially spaced apart from a receiver. The transmitter may include an axial transmitting antenna and at least one transverse transmitting antenna and the receiver may include an axial receiving antenna and at least one transverse receiving antenna. The transmitting antennas transmit corresponding electromagnetic waves into the subterranean wellbore. The receiving antennas receive corresponding voltage measurements which are processed to compute harmonic voltage coefficients. Ratios of the selected harmonic voltage coefficients are processed to compute gain compensated, azimuthally invariant measurement quantities.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 8, 2018
    Inventors: Peter T. Wu, Mark T. Frey
  • Patent number: 9964699
    Abstract: Disclosed herein are systems and methods related to use of hollow core photonic crystal fibers. A system includes a tube and a collimating lens configured in a first end of the tube, wherein a single mode fiber is coupled to a first end of the collimating lens. A second lens is supported by a structure at a second end of the tube, the second lens receiving a first signal from a second end of the collimating lens and outputting a second signal that is coupled into a first end of a hollow core photonic crystal fiber. A first gas tube is configured to introduce gas through the structure into a chamber and a sealant seals at least one of the collimating lens and the structure within the tube. An output signal is received at a detector that catches the entire beam to suppress multiple-mode beating noise.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 8, 2018
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administraion
    Inventors: Jeffrey R. Chen, Kenji Numata, Stewart T. Wu
  • Patent number: 9905005
    Abstract: Methods, systems and platforms for digital imaging of multiple regions of an array, and detection and counting of the labeled features thereon, are described.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: February 27, 2018
    Assignee: Cellular Research, Inc.
    Inventors: Glenn Fu, Roger Rudoff, David Stern, George T. Wu, Stephen P. A. Fodor, Geoffrey Facer
  • Patent number: 9802187
    Abstract: A non-woven electret fibrous web for electrostatic adsorption and odor elimination and the preparation process thereof. In certain exemplary embodiments, the non-woven electret fibrous web includes a multiplicity of electret fibers, at least one of a plurality of photo-catalytic fibers or a plurality of multi-component fibers; and optionally, at least one of a plurality of chemically-active particulates, a plurality of carbon-based fibers, or a plurality of mono-component thermoplastic fibers. In other exemplary embodiments, carding and cross-lapping or air-laying processes are disclosed for making nonwoven fibrous webs including electret fibers and one or more of photocatalytic fibers, chemically-active particulates, multi-component fibers, mono-component thermoplastic fibers, or carbon-based fibers.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: October 31, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Xiaoshuan Fu, Rui Chen, Qiang Xu, Jean Le normand, Hendrik Both, Tien T. Wu, Andrew R. Fox
  • Patent number: 9771675
    Abstract: Nonwoven fibrous webs including randomly oriented discrete fibers defining a multiplicity of non-hollow projections extending from a major surface of the nonwoven fibrous web (as considered without the projections), and a plurality of substantially planar land areas formed between each adjoining projection in a plane defined by and substantially parallel with the major surface. In some exemplary embodiments, the randomly oriented discrete fibers include multi-component fibers having at least a first region having a first melting temperature and a second region having a second melting temperature, wherein the first melting temperature is less than the second melting temperature. At least a portion of the oriented discrete fibers are bonded together at a plurality of intersection points with the first region of the multi-component fibers. In certain embodiments, the patterned air-laid nonwoven fibrous webs include particulates.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 26, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Gordon L. Altshuler, James P. Endle, David L. Vall, Gerry A. Hoffdahl, Randy L. Robertson, Tien T. Wu, Mario A. Perez, Jeremie Peyras-Carratte, Jean-Marie Coant, Lahoussaine Lalouch