Patents by Inventor Ta-Cheng Lien

Ta-Cheng Lien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230375921
    Abstract: An extreme ultraviolet mask including a substrate, a reflective multilayer stack on the substrate and a multi-layer patterned absorber layer on the reflective multilayer stack is provided. Disclosed embodiments include an absorber layer that includes an alloy comprising ruthenium (Ru), chromium (Cr), platinum (Pt), gold (Au), iridium (Ir), titanium (Ti), niobium (Nb), rhodium (Rh), molybdenum (Mo), tungsten (W) or palladium (Pd), and at least one alloying element. The at least one alloying element includes ruthenium (Ru), chromium (Cr), tantalum (Ta), platinum (Pt), gold (Au), iridium (Ir), titanium (Ti), niobium (Nb), rhodium (Rh), molybdenum (Mo), hafnium (Hf), boron (B), nitrogen (N), silicon (Si), zirconium (Zr) or vanadium (V). Other embodiments include a multi-layer patterned absorber structure with layers that include an alloy and an alloying element, where at least two of the layers of the multi-layer structure have different compositions.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Pei-Cheng HSU, Ping-Hsun LIN, Ta-Cheng LIEN, Hsin-Chang LEE
  • Publication number: 20230367193
    Abstract: In a method of manufacturing a photo mask, an etching mask layer having circuit patterns is formed over a target layer of the photo mask to be etched. The photo mask includes a backside conductive layer. The target layer is etched by plasma etching, while preventing active species of plasma from attacking the backside conductive layer.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Hsin-Chang LEE, Pei-Cheng HSU, Ta-Cheng LIEN, Tzu Yi WANG
  • Patent number: 11815805
    Abstract: A method for forming an extreme ultraviolet photolithography mask includes forming a reflective multilayer, forming a buffer layer on the reflective multilayer, and forming an absorption layer on the reflective multilayer. Prior to patterning the absorption layer, an outer portion of the absorption layer is removed. Photoresist is then deposited on the top surface of the absorption layer and on sidewalls of the absorption layer. The photoresist is then patterned, and the absorption layer is etched with a plasma etching process in the presence of the patterned photoresist. The presence of the photoresist on the sidewalls of the absorption layer during the plasma etching process helps to improve uniformity in the etching of the absorption layer during the plasma etching process.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chang Hsueh, Hsin-Chang Lee, Ta-Cheng Lien
  • Patent number: 11815804
    Abstract: An extreme ultraviolet mask including a substrate, a reflective multilayer stack on the substrate and a capping layer on the reflective multilayer stack is provided. The reflective multilayer stack is treated prior to formation of the capping layer on the reflective multilayer stack. The capping layer is formed by an ion-assisted ion beam deposition or an ion-assisted sputtering process.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: November 14, 2023
    Inventors: Ping-Hsun Lin, Pei-Cheng Hsu, Ching-Fang Yu, Ta-Cheng Lien, Chia-Jen Chen, Hsin-Chang Lee
  • Publication number: 20230350283
    Abstract: A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes one or more alternating pairs of a first Cr based layer and a second Cr based layer different from the first Cr based layer.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 2, 2023
    Inventors: Pei-Cheng HSU, Ching-Huang CHEN, Hung-Yi TSAI, Ming-Wei CHEN, Hsin-Chang LEE, Ta-Cheng LIEN
  • Publication number: 20230352309
    Abstract: Methods for plasma stability in a plasma treatment tool are disclosed. A laser is positioned within a plasma treatment chamber within a skin depth of the electromagnetic field generated therein. The laser can be synchronized with the electrical triggering signals that generate the electromagnetic field. This scheme provides a stable and efficient method of plasma ignition.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Ping-Hsun Lin, Hung-Yi Tsai, Hao-Ping Cheng, Ta-Cheng Lien, Hsin-Chang Lee
  • Publication number: 20230341767
    Abstract: A method includes placing a photomask having a contamination on a surface thereof in a plasma processing chamber. The contaminated photomask is plasma processed in the plasma processing chamber to remove the contamination from the surface. The plasma includes oxygen plasma or hydrogen plasma.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 26, 2023
    Inventors: Chun-Fu YANG, Pei-Cheng Hsu, Ta-Cheng Lien, Hsin-Chang Lee
  • Patent number: 11789356
    Abstract: In a method of manufacturing a photo mask, an etching mask layer having circuit patterns is formed over a target layer of the photo mask to be etched. The photo mask includes a backside conductive layer. The target layer is etched by plasma etching, while preventing active species of plasma from attacking the backside conductive layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Chang Lee, Pei-Cheng Hsu, Ta-Cheng Lien, Tzu Yi Wang
  • Publication number: 20230280645
    Abstract: The present disclosure describes a method of patterning a semiconductor wafer using extreme ultraviolet lithography (EUVL). The method includes receiving an EUVL mask that includes a substrate having a low temperature expansion material, a reflective multilayer over the substrate, a capping layer over the reflective multilayer, and an absorber layer over the capping layer. The method further includes patterning the absorber layer to form a trench on the EUVL mask, wherein the trench has a first width above a target width. The method further includes treating the EUVL mask with oxygen plasma to reduce the trench to a second width, wherein the second width is below the target width. The method may also include treating the EUVL mask with nitrogen plasma to protect the capping layer, wherein the treating of the EUVL mask with the nitrogen plasma expands the trench to a third width at the target width.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 7, 2023
    Inventors: Pei-Cheng Hsu, Chun-Fu Yang, Ta-Cheng Lien, Hsin-Chang Lee
  • Patent number: 11726399
    Abstract: A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes one or more alternating pairs of a first Cr based layer and a second Cr based layer different from the first Cr based layer.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Cheng Hsu, Ching-Huang Chen, Hung-Yi Tsai, Ming-Wei Chen, Ta-Cheng Lien, Hsin-Chang Lee
  • Publication number: 20230251563
    Abstract: In a method of manufacturing a reflective mask, a photo resist layer is formed over a mask blank. The mask blank includes a substrate, a reflective multilayer on the substrate, a capping layer on the reflective multilayer, an absorber layer on the capping layer and a hard mask layer, and the absorber layer is made of Cr, CrO or CrON. The photo resist layer is patterned, the hard mask layer is patterned by using the patterned photo resist layer, the absorber layer is patterned by using the patterned hard mask layer, and an additional element is introduced into the patterned absorber layer to form a converted absorber layer.
    Type: Application
    Filed: April 3, 2023
    Publication date: August 10, 2023
    Inventors: Hsin-Chang LEE, Chia-Jen CHEN, Pei-Cheng HSU, Ta-Cheng LIEN
  • Patent number: 11714350
    Abstract: A method includes placing a photomask having a contamination on a surface thereof in a plasma processing chamber. The contaminated photomask is plasma processed in the plasma processing chamber to remove the contamination from the surface. The plasma includes oxygen plasma or hydrogen plasma.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Fu Yang, Pei-Cheng Hsu, Ta-Cheng Lien, Hsin-Chang Lee
  • Publication number: 20230205072
    Abstract: A reflective mask includes a substrate, a reflective multilayer disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer includes a base material made of one or more of a Cr based material, an Ir based material, a Pt based material, or Co based material, and further contains one or more additional elements selected from the group consisting of Si, B, Ge, Al, As, Sb, Te, Se and Bi.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Hung-Yi TSAI, Wei-Che HSIEH, Ta-Cheng LIEN, Hsin-Chang LEE, Ping-Hsun LIN, Hao-Ping CHENG, Ming-Wei CHEN, Szu-Ping TSAI
  • Publication number: 20230161241
    Abstract: An extreme ultraviolet (EUV) mask, includes a substrate, a reflective multilayer stack on the substrate, and a single layer or multi-layer capping feature on the reflective multilayer stack. The capping feature includes a capping layer or capping layers including a material having an amorphous structure. Other described embodiments include capping layer(s) that contain element(s) having a first solid carbon solubility less than about 3. In multilayer capping feature embodiments, element(s) of the respective capping layers have different solid carbon solubility properties.
    Type: Application
    Filed: May 19, 2022
    Publication date: May 25, 2023
    Inventors: Hsin-Chang LEE, Pei-Cheng HSU, Wei-Hao LEE, Ping-Hsun LIN, Ta-Cheng LIEN, Ching-Fang YU
  • Publication number: 20230161261
    Abstract: Coated nanotubes and bundles of nanotubes are formed into membranes useful in optical assemblies in EUV photolithography systems. These optical assemblies are useful in methods for patterning materials on a semiconductor substrate. Such methods involve generating, in a UV lithography system, UV radiation. The UV radiation is passed through a coating layer of the optical assembly, e.g., a pellicle assembly. The UV radiation that has passed through the coating layer is passed through a matrix of individual nanotubes or matrix of nanotube bundles. UV radiation that passes through the matrix of individual nanotubes or matrix of nanotube bundles is reflected from a mask and received at a semiconductor substrate.
    Type: Application
    Filed: May 16, 2022
    Publication date: May 25, 2023
    Inventors: Wei-Hao LEE, Pei-Cheng HSU, Huan-Ling LEE, Ta-Cheng LIEN, Hsin-Chang LEE, Chin-Hsiang LIN
  • Publication number: 20230161240
    Abstract: In a method of manufacturing a reflective mask, an adhesion layer is formed over a mask blank. The mask blank includes a substrate, a reflective multilayer disposed over the substrate, a capping layer disposed over the reflective multilayer, an absorber layer disposed over the capping layer, and a hard mask layer disposed over the absorber layer. A photoresist pattern is formed over the adhesion layer, the adhesion layer is patterned, the hard mask layer is patterned, and the absorber layer is patterned using the patterned hard mask layer as an etching mask. The photoresist layer has a higher adhesiveness to the adhesion layer than to the hard mask layer.
    Type: Application
    Filed: May 4, 2022
    Publication date: May 25, 2023
    Inventors: Wei-Che HSIEH, Chia-Ching CHU, Ya-Lun CHEN, Yu-Chung SU, Tzu-Yi WANG, Yahru CHENG, Ta-Cheng LIEN, Hsin-Chang LEE, Ching-Yu CHANG
  • Publication number: 20230152681
    Abstract: A method includes forming a multi-layered reflective layer over a substrate; depositing a metal capping layer over the multi-layered reflective layer; depositing a first metal oxide layer over the metal capping layer; depositing a metal nitride layer over the first metal oxide layer; depositing a second metal oxide layer over the metal nitride layer; forming a plurality of features on the second metal oxide layer and the metal nitride layer.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Cheng HSU, Ta-Cheng LIEN, Hsin-Chang LEE
  • Patent number: 11650493
    Abstract: The present disclosure describes a method of patterning a semiconductor wafer using extreme ultraviolet lithography (EUVL). The method includes receiving an EUVL mask that includes a substrate having a low temperature expansion material, a reflective multilayer over the substrate, a capping layer over the reflective multilayer, and an absorber layer over the capping layer. The method further includes patterning the absorber layer to form a trench on the EUVL mask, wherein the trench has a first width above a target width. The method further includes treating the EUVL mask with oxygen plasma to reduce the trench to a second width, wherein the second width is below the target width. The method may also include treating the EUVL mask with nitrogen plasma to protect the capping layer, wherein the treating of the EUVL mask with the nitrogen plasma expands the trench to a third width at the target width.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Cheng Hsu, Chun-Fu Yang, Ta-Cheng Lien, Hsin-Chang Lee
  • Publication number: 20230135538
    Abstract: A pellicle assembly includes a pellicle membrane with a nanotube layer formed from nanotubes having a minimum length of 1,000 ?m. The pellicle membrane can be formed with multiple layers and has a combination of high transmittance, low deflection, and small pore size. A conformal coating may applied to an outer surface of the pellicle membrane. The conformal coating is intended to protect the pellicle membrane from damage that can occur due to heat and hydrogen plasma created during EUV exposure.
    Type: Application
    Filed: February 28, 2022
    Publication date: May 4, 2023
    Inventors: Pei-Cheng Hsu, Ping-Huan Tsai, Huan-Ling Lee, Ta-Cheng Lien, Hsin-Chang Lee, Chin-Hsiang Lin
  • Publication number: 20230121303
    Abstract: A reflective mask blank includes a substrate, a reflective multilayer (RML) disposed on the substrate, a capping layer disposed on the reflective multilayer, and an absorber layer disposed on the capping layer. The absorber layer has length or width dimensions smaller than the capping layer, and part of the capping layer is exposed by the absorber layer. The dimension of the absorber layer and the hard mask layer ranges between 146 cm to 148 cm. The dimensions of the substrate, the RML, and the capping layer range between 150 cm to 152 cm.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Hsin-Chang LEE, Pei-Cheng HSU, Ta-Cheng LIEN, Wen-Chang HSUEH