Patents by Inventor Tae Kyung Ahn

Tae Kyung Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110193083
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Application
    Filed: April 21, 2011
    Publication date: August 11, 2011
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Min-Kyu KIM, Jong-Han JEONG, Tae-Kyung AHN, Jae-Kyeong JEONG, Yeon-Gon MO, Jin-Seong PARK, Hyun-Joong CHUNG, Kwang-Suk KIM, Hui-Won YANG
  • Patent number: 7994500
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 9, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Min-Kyu Kim, Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Yeon-Gon Mo, Jin-Seong Park, Hyun-Joong Chung, Kwang-Suk Kim, Hul-Won Yang
  • Publication number: 20110140115
    Abstract: An organic light emitting display (OLED) device is disclosed. The OLED device includes a thin-film transistor (TFT), which includes a gate electrode; an active layer insulated from the gate electrode; source and drain electrodes insulated from the gate electrode and contacting the active layer; and an insulation layer interposed between the source and drain electrodes and the active layer; and an organic light-emitting element electrically connected to the TFT, wherein the insulation layer includes a first insulation sub-layer contacting the active layer; and a second insulation sub-layer formed on the first insulation sub-layer.
    Type: Application
    Filed: November 11, 2010
    Publication date: June 16, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventor: Tae-Kyung Ahn
  • Publication number: 20110095274
    Abstract: An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 28, 2011
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Hyun-Joong CHUNG, Jin-Seong PARK, Jong-Han JEONG, Jae-Kyeong JEONG, Yeon-Gon MO, Min-Kyu KIM, Tae-Kyung AHN, Hui-Won YANG, Kwang-Suk KIM, Eun-Hyun KIM, Jae-Wook KANG, Jae-Soon IM
  • Publication number: 20110042666
    Abstract: An organic light emitting display device including a plurality of scan lines arranged in a first direction, a plurality of data lines arranged in a second direction, the plurality of data lines intersecting with the plurality of scan lines, and pixels respectively disposed at intersection portions of the scan and data lines, each pixel including at least one thin film transistor (TFT) and an organic light emitting diode, wherein the TFT is an oxide TFT, the oxide TFT including a first oxide semiconductor layer as an active layer, and a second oxide semiconductor layer is disposed between intersecting scan and data lines.
    Type: Application
    Filed: May 27, 2010
    Publication date: February 24, 2011
    Inventors: Hui-Won Yang, Yeon-Gon Mo, Jin-Seong Park, Min-Kyu Kim, Tae-Kyung Ahn, Hyun-Joong Chung
  • Patent number: 7862796
    Abstract: A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7850943
    Abstract: A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: December 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Patent number: 7835001
    Abstract: A method of aligning a substrate includes forming a first alignment hole in the substrate, preparing a mask with a second alignment hole narrower than the first alignment hole, modifying a surface reflectance around either the first alignment hole or the second alignment hole to form a treatment region, positioning the mask below the substrate, such that the first and second alignment holes overlap, and operating a sensor unit above the first alignment hole to examine alignment of the first and second alignment holes.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: November 16, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jin-Ho Kwack, Tae-Kyung Ahn, Min-Kyu Kim, Se-Yeoul Kwon
  • Patent number: 7829189
    Abstract: Provided is a chemical wet preparation method for Group 12-16 compound semiconductor nanocrystals. The method includes mixing one or more Group 12 metals or Group 12 precursors with a dispersing agent and a solvent followed by heating to obtain a Group 12 metal precursor solution; dissolving one or more Group 16 elements or Group 16 precursors in a coordinating solvent to obtain a Group 16 element precursor solution; and mixing the Group 12 metal precursors solution and the Group 16 element precursors solution to form a mixture, and then reacting the mixture to grow the semiconductor nanocrystals. The Group 12-16 compound semiconductor nanocrystals are stable and have high quantum efficiency and uniform sizes and shapes.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-joo Jang, Tae-Kyung Ahn
  • Publication number: 20100181563
    Abstract: A thin film transistor using an oxide semiconductor as an active layer, and its method of manufacture. The thin film transistor includes: a substrate; an active layer formed of an oxide semiconductor; a gate insulating layer formed of a dielectric on the active layer, the dielectric having an etching selectivity of 20 to 100:1 with respect to the oxide semiconductor; a gate electrode formed on the gate insulating layer; an insulating layer formed on the substrate including the gate electrode and having contact holes to expose the active layer; and source and drain electrodes connected to the active layer through the contact holes. Since the source and drain electrodes are not overlapped with the gate electrode, parasitic capacitance between the source and drain electrodes and the gate electrode is minimized. Since the gate insulating layer is formed of dielectric having a high etching selectivity with respect to oxide semiconductor, the active layer is not deteriorated.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 22, 2010
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Min-Kyu KIM, Jin-Seong PARK, Tae-Kyung AHN, Hyun-Joong CHUNG
  • Publication number: 20100176383
    Abstract: Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: Mobile Display Co., Ltd.
    Inventors: Jin-Seong Park, Yeon-Gon Mo, Jae-Kyeong Jeong, Min-Kyu Kim, Hyun-Joong Chung, Tae-Kyung Ahn
  • Publication number: 20100176394
    Abstract: An oxide semiconductor thin film transistor and a flat panel display device incorporating the same oxide semiconductor thin film transistor. The thin film transistor includes a gate electrode formed on the substrate, a gate insulating layer formed on the substrate and covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer and covering the gate electrode, a titanium layer formed in a source region and a drain region of the oxide semiconductor layer, and source and drain electrodes respectively coupled to the source region and the drain region through the titanium layer and made of copper. The titanium layer reduces the contact resistance between the source and drain electrodes made of copper and the oxide semiconductor layer, forms a stable interface junction therebetween, and blocks a diffusion of copper.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Jin-Seong Park, Yeon-Gon Mo, Jae-Kyeong Jeong, Min-Kyu Kim, Hyun-Joong Chung, Tae-Kyung Ahn, Eun-Hyun Kim
  • Publication number: 20100173434
    Abstract: A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further, a method for fabricating the nanocrystal electroluminescence device.
    Type: Application
    Filed: March 12, 2010
    Publication date: July 8, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Joo JANG, Shin Ae JUN, Sung Hun LEE, Tae Kyung AHN, Seong Jae CHOI
  • Patent number: 7658905
    Abstract: A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: February 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi
  • Publication number: 20100026169
    Abstract: Disclosed is a thin film transistor which has an oxide semiconductor as an activation layer, a method of manufacturing the same and a flat panel display device having the same. The thin film transistor includes an oxide semiconductor layer formed on a substrate and including a channel region, a source region and a drain region, a gate electrode insulated from the oxide semiconductor layer by a gate insulating film, and source electrode and drain electrode which are coupled to the source region and the drain region, respectively. The oxide semiconductor layer includes a first layer portion and a second layer portion. The first layer portion has a first thickness and a first carrier concentration, and the second layer portion has a second thickness and a second carrier concentration. The second carrier concentration is lower than the first carrier concentration.
    Type: Application
    Filed: March 23, 2009
    Publication date: February 4, 2010
    Inventors: Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Jin-Sung Park, Hun-Jung Lee, Hyun-Soo Shin, Yeon-Gon Mo
  • Publication number: 20090321732
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Application
    Filed: April 16, 2009
    Publication date: December 31, 2009
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Min-Kyu Kim, Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Yeon-Gon Mo, Jin-Seong Park, Hyun-Joong Chung, Kwang-Suk Kim, Hul-Won Yang
  • Publication number: 20090321731
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include a gate electrode formed on a substrate; an active layer made of an oxide semiconductor and insulated from the gate electrode by a gate insulating layer; source and drain electrodes coupled to the active layer; and an interfacial stability layer formed on one or both surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristic as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Application
    Filed: January 13, 2009
    Publication date: December 31, 2009
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Jae-Kyeong JEONG, Jong-Han Jeong, Min-Kyu Kim, Tae-Kyung Ahn, Yeon-Gon Mo, Hui-Won Yang
  • Publication number: 20090267050
    Abstract: A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 29, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Joo JANG, Shin Ae JUN, Tae Kyung AHN, Sung Hun LEE, Seong Jae CHOI
  • Publication number: 20090256147
    Abstract: A thin film transistor, including a transparent channel pattern, a transparent gate insulating layer in contact with the channel pattern, a passivation film pattern disposed on the channel pattern, a source/drain coupled to the channel pattern through a via hole in the passivation film pattern, and a gate facing the channel pattern, the gate insulating layer interposed between the gate and the channel pattern, wherein the passivation film pattern includes at least one of polyimide, photoacryl, and spin on glass (SOG).
    Type: Application
    Filed: March 13, 2009
    Publication date: October 15, 2009
    Inventors: Min-Kyu Kim, Tae-Kyung Ahn, Jae-Kyeong Jeong
  • Publication number: 20090239074
    Abstract: A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects
    Type: Application
    Filed: January 26, 2009
    Publication date: September 24, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Tae Kyung Ahn, Sung Hun Lee, Seong Jae Choi