Patents by Inventor Tae Yeon Seong

Tae Yeon Seong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050077537
    Abstract: Provided are a nitride-based light emitting device and a method of manufacturing the same. The nitride-based light emitting device has a structure in which at least an n-cladding layer, an active layer, and a p-cladding layer are sequentially formed on a substrate. The light emitting device further includes an ohmic contact layer composed of a zinc (Zn)-containing oxide containing a p-type dopant formed on the p-cladding layer. The method of manufacturing the nitride-based light emitting device includes forming an ohmic contact layer composed of Zn-containing oxide containing a p-type dopant on the p-cladding layer, the ohmic contact layer being made and annealing the resultant structure. The nitride-based light emitting device and manufacturing method provide excellent I-V characteristics by improving ohmic contact with a p-cladding layer while significantly enhancing light emission efficiency of the device due to high light transmittance of a transparent electrode.
    Type: Application
    Filed: October 5, 2004
    Publication date: April 14, 2005
    Applicants: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Tae-yeon Seong, Kyoung-kook Kim, June-o Song, Dong-seok Leem
  • Publication number: 20050051783
    Abstract: A light emitting device and a method of manufacturing the same are provided. A light emitting device has a structure wherein a substrate, an n-type clad layer, a light emitting layer, a p-type clad layer, an ohmic contact layer, and a reflective layer are successively stacked. The ohmic contact layer is formed by adding an additional element to an indium oxide. According to the light emitting device and the method of manufacturing the same, the characteristics of ohmic contact with a p-type clad layer is improved, thus increasing the efficiency and yield of wire bonding during packaging FCLEDS. Also, it is possible to increase the light emitting efficiency and life span of light emitting devices due to the low contactless resistance and the excellent electric current and voltage characteristic.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 10, 2005
    Applicants: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: June-o Song, Dong-seok Leem, Tae-yeon Seong
  • Publication number: 20050045907
    Abstract: A nitride-based light emitting device having a light emitting layer between an N-type clad layer and a P-type clad layer is provided. The light emitting device including: a reflective layer which reflects light emitting from the light emitting layer; and at least one metal layer which is formed between the reflective layer and the P-type clad layer.
    Type: Application
    Filed: July 15, 2004
    Publication date: March 3, 2005
    Applicants: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: June-o Song, Tae-yeon Seong
  • Publication number: 20050040755
    Abstract: Provided is a transparent thin film electrode for forming an ohmic contact to a p-type semiconductor containing nitrogen (N) and gallium (Ga) in order to realize a high quality light emitting diode (LED) and a laser diode (LD). T he transparent thin film electrode includes a copper (Cu)-based conductive layer including Cu and another metal and a metal capping layer formed on the copper-based conductive layer. Alternatively, the transparent thin film electrode may include a Cu-based conductive layer, an intermediate layer formed on the Cu-based conductive layer, and a metal capping layer formed on the intermediate layer.
    Type: Application
    Filed: August 23, 2004
    Publication date: February 24, 2005
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: June-o Song, Dong-seok Leem, Tae-yeon Seong
  • Publication number: 20050006229
    Abstract: A thin film electrode for ohmic contact of a p-type GaN semiconductor includes first and second electrode layers sequentially stacked on a p-type GaN layer. The first electrode layer may include an Ni-based alloy, a Cu-based alloy, a Co-based alloy, or a solid solution capable of forming a p-type thermo-electronic oxide or may include a Ni-oxide doped with at least one selected from Al, Ga, and In. The second electrode layer may include at least one selected from the group consisting of Au, Pd, Pt, Ru, Re, Sc, Mg, Zn, V, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Ca, Na, Sb, Li, In, Sn, Al, Ni, Cu, and Co. Furthermore, a method of fabricating the thin film electrode is provided.
    Type: Application
    Filed: July 9, 2004
    Publication date: January 13, 2005
    Applicants: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Dong-seok Leem, June-o Song, Sang-ho Kim, Tae-yeon Seong
  • Publication number: 20040222524
    Abstract: Disclosed herein is a technique for forming a high quality ohmic contact utilizable in the fabrication of short-wavelength light emitting diodes (LEDs) emitting blue and green visible light and ultraviolet light, and laser diodes (LDs) using a gallium nitride (GaN) semiconductor.
    Type: Application
    Filed: March 17, 2004
    Publication date: November 11, 2004
    Applicants: Samsung Electronics Co., Ltd., Kwangju Institute of Science and Technology
    Inventors: June-o Song, Dong-suk Leem, Tae-yeon Seong
  • Patent number: 6326294
    Abstract: A method of fabricating on ohmic metal electrode. The p-type ohmic metal electrode according to the present invention employs Ru and RuOx as the cover layer in lieu of conventional Au, in order to effectively prevent penetration by contaminants in the air, such as oxygen, carbon, and H2O, and to form a stable metal-Ga intermetallic phase at the junction between the contact layer and the nitride compound semiconductor. The n-type ohmic metal electrode according to the present invention employs Ru as the diffusion barrier in lieu of conventional Ni or Pt, in order to effectively form a metal-nitride phase such as titanium nitride that contributes to superior ohmic characteristics during the heating process, without destruction of the junction. According to the present invention, it is possible to fabricate devices having superior electrical, optical, and thermal characteristics compared with conventional devices.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: December 4, 2001
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Ja Soon Jang, Tae Yeon Seong, Seong Ju Park
  • Patent number: 6169297
    Abstract: A metal thin film with an ohmic contact for light emit diodes and a method of producing such a film are disclosed. The metal thin film has a p-type gallium nitride (GaN) semiconductor layer. Nickel (Ni), platinum (Pt) and gold (Au) layers are deposited on the GaN semiconductor layer in a way such that the gold layer forms a top layer, with either one of the platinum and nickel layers being selectively used as an inter-diffusion barrier between metal layers. The inter-diffusion barrier may be formed by depositing platinum between the nickel and gold layers, thus forming an Ni/Pt/Au metal thin film, or formed by depositing nickel between the platinum and gold layers, thus forming an Pt/Ni/Au metal thin film. In the method, a GaN semiconductor is washed so as to be free from carbide and oxide layers. The Ni, Pt and Au layers are formed on the GaN semiconductor layer through a vacuum deposition process at 5×10−5-2×10−1 torr.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: January 2, 2001
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Ja Soon Jang, Hyo Keun Kim, Seong Ju Park, Tae Yeon Seong, Heung Kyu Jang