Patents by Inventor Tae-Young Chung

Tae-Young Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7056786
    Abstract: A self-aligned buried contact (BC) pair includes a substrate having diffusion regions; an oxide layer exposing a pair of diffusion regions formed on the substrate; bit lines formed between adjacent diffusion regions and on the oxide layer, each of the bit lines having bit line sidewall spacers formed on sidewalls thereof; a first interlayer dielectric (ILD) layer formed over the bit lines and the oxide layer; a pair of BC pads formed between adjacent bit lines and within the first ILD layer, each BC pad being aligned with one of the pair of exposed diffusion regions in the substrate; and a pair of capacitors, each of the pair of BC pads having one of the pair of capacitors formed thereon, wherein a pair of the bit line sidewall spacers is adjacent to each of the BC pads and the pair of bit line sidewall spacers has an asymmetrical shape.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: June 6, 2006
    Assignee: Samsung Electronics Co., LTD
    Inventors: Cheol-Ju Yun, Chang-Hyun Cho, Tae-Young Chung
  • Patent number: 7056828
    Abstract: In one embodiment, adjacent conductive patterns are formed overlying a semiconductor substrate. The conductive patterns each have a conductive line and a capping layer. A first spacer formation layer is formed between the adjacent conductive patterns. The first spacer formation layer is formed between the top surface of the capping layer and the bottom surface of the conductive line. A conformal second spacer formation layer is formed on the conductive patterns. A first interlayer insulating layer is formed on the conformal second spacer formation layer. Next, an opening is formed to extend to a portion of the first spacer formation layer, in the first interlayer insulating layer. The portion of the first spacer formation layer is etched, using the second spacer formation layer as an etch mask, to form a single-layer spacer on sidewalls of the conductive patterns, concurrently with a contact hole.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 6, 2006
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Tae-Young Chung, Jae-Goo Lee, Dong-Jun Lee
  • Patent number: 7049203
    Abstract: A semiconductor device comprises a semiconductor substrate and an interlayer insulating layer formed on the semiconductor substrate. The interlayer insulating layer preferably has a contact pad formed therein. A capacitor lower electrode is electrically connected to the contact pad. The capacitor lower electrode further comprises a pad-shaped storage node electrically connected to the contact pad; and a cup-shaped storage node arranged on the pad-shaped storage node. In this manner, it is possible to increase capacitance while reducing not open contacts. Leaning of the storage nodes can also be significantly reduced.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: May 23, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Young Chung, Jae-Goo Lee, Je-Min Park
  • Publication number: 20060091482
    Abstract: A metal oxide semiconductor (MOS) includes an isolation layer disposed in a semiconductor substrate to define an active region. A source region and a drain region are disposed on both sides of the active region such that a first direction is defined from the source region to the drain region. A channel recess is disposed in the active region between the source and drain regions. The channel recess has a convex surface when viewed from a cross-sectional view taken along a second direction orthogonal to the first direction. A gate electrode fills the channel recess and crosses the active region in the second direction. A gate insulating layer is interposed between the gate electrode and the active region.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 4, 2006
    Inventors: Young-Sung Kim, Tae-Young Chung
  • Publication number: 20060049445
    Abstract: Disclosed is a dynamic random access memory (DRAM) comprising a transistor having channel holes formed in the channel region thereof and cell gate structures formed in the channel holes. At least three layered impurity regions are formed in a semiconductor substrate between the channel holes and the at least three layered impurity regions form a source region for the transistor.
    Type: Application
    Filed: August 25, 2005
    Publication date: March 9, 2006
    Inventors: Jin-Woo Lee, Yong-Sung Kim, Tae-Young Chung
  • Publication number: 20050272250
    Abstract: In an embodiment a method of forming self-aligned contacts in a semiconductor memory device includes: forming conductive stacks of conductive layers on a semiconductor substrate; forming insulating spacer layers on sidewalls of the conductive stacks; forming an insulating layer; forming a capping insulating layer covering portions of the insulating layer; and forming conductive pads that fill the contact holes to contact the semiconductor substrate. The capping insulating layer has a function of a buffer, so an etched amount of mask layers insulating the conductive layers is minimized, and a probability of a short circuit between capacitor electrodes and the conductive stacks is greatly reduced.
    Type: Application
    Filed: June 7, 2005
    Publication date: December 8, 2005
    Inventors: Cheol-Ju Yun, Tae-Young Chung, In-Ho Nam
  • Patent number: 6967150
    Abstract: According to some embodiments of the invention, a method of forming a self-aligned contact of a semiconductor device includes forming a plurality of conductive lines that are spaced apart from each other and pass over a plurality of conductive regions. An insulating layer is formed over and between the conductive lines. A plurality of contact holes are then formed to selectively expose the conductive regions by selectively removing the insulating layer without exposing the conductive lines. The contact holes are extended using an isotropic etching until the conductive lines begin to be exposed. Thereafter, contacts are formed in the contact holes such that the contacts are coupled to the conductive regions.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: November 22, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cheol-Ju Yun, Tae-Young Chung
  • Publication number: 20050218408
    Abstract: A method of manufacturing a semiconductor device includes forming conductive structures on a substrate. Each of the conductive structures has a line shape that extends along a first direction parallel to the substrate. Insulating spacers are formed on upper sidewalls of the conductive structures. An insulating interlayer is formed that covers the conductive structures. A portion of the insulating interlayer between the conductive structures is etched to form a contact hole. An upper portion of the contact hole is larger than a lower portion thereof. The upper portion of the contact hole has a first width along the first direction and a second width along a second direction parallel to the substrate and substantially perpendicular to the first direction. The first width is substantially larger than the second width. The contact hole is filled with a conductive material to form a contact plug.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 6, 2005
    Inventors: Cheol-ju Yun, Tae-young Chung, Dong-jun Lee
  • Publication number: 20050186733
    Abstract: According to some embodiments of the invention, a method of forming a self-aligned contact of a semiconductor device includes forming a plurality of conductive lines that are spaced apart from each other and pass over a plurality of conductive regions. An insulating layer is formed over and between the conductive lines. A plurality of contact holes are then formed to selectively expose the conductive regions by selectively removing the insulating layer without exposing the conductive lines. The contact holes are extended using an isotropic etching until the conductive lines begin to be exposed. Thereafter, contacts are formed in the contact holes such that the contacts are coupled to the conductive regions.
    Type: Application
    Filed: September 10, 2004
    Publication date: August 25, 2005
    Inventors: Cheol-Ju Yun, Tae-Young Chung
  • Publication number: 20050179075
    Abstract: According to some embodiments of the invention, transistors have channel regions between channel-portion holes. Methods of forming the same include at least two channel-portion holes disposed in a semiconductor substrate. Line patterns are formed in parallel to be spaced apart from each other on a main surface of the semiconductor substrate to fill the channel-portion holes. A channel region is disposed in the semiconductor substrate below the line patterns. At this time, the channel region is formed between the channel-portion holes and also covers lower portions of the channel-portion holes. Driving current capability and refresh characteristics of DRAMs utilizing the inventive transistors are improved.
    Type: Application
    Filed: February 8, 2005
    Publication date: August 18, 2005
    Inventors: Jin-Woo Lee, Tae-Young Chung, Yong-Sung Kim
  • Patent number: 6890841
    Abstract: An integrated circuit memory device is formed by forming an interlevel insulating layer on a substrate. A plurality of storage node contact holes are formed in the interlayer insulating layer and are arranged in a pattern. A plurality of contact plugs are formed in the plurality of storage node contact holes, respectively. A material layer is formed on the interlevel insulating layer that has a plurality of landing pad holes that expose the plurality of contact plugs, respectively, the plurality of landing pad holes are arranged in a pattern that is offset with respect to the pattern of the storage node contact holes. A plurality of landing pads are formed in the plurality of landing pad holes and are connected to the plurality of contact plugs, respectively. A plurality of storage nodes are formed that are connected to the plurality of landing pads, respectively.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: May 10, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-hyun Lee, Tae-young Chung, Chang-hyun Cho, Yang-keun Park, Sang-bum Kim
  • Publication number: 20050046048
    Abstract: A self-aligned buried contact (BC) pair includes a substrate having diffusion regions; an oxide layer exposing a pair of diffusion regions formed on the substrate; bit lines formed between adjacent diffusion regions and on the oxide layer, each of the bit lines having bit line sidewall spacers formed on sidewalls thereof; a first interlayer dielectric (ILD) layer formed over the bit lines and the oxide layer; a pair of BC pads formed between adjacent bit lines and within the first ILD layer, each BC pad being aligned with one of the pair of exposed diffusion regions in the substrate; and a pair of capacitors, each of the pair of BC pads having one of the pair of capacitors formed thereon, wherein a pair of the bit line sidewall spacers is adjacent to each of the BC pads and the pair of bit line sidewall spacers has an asymmetrical shape.
    Type: Application
    Filed: January 23, 2004
    Publication date: March 3, 2005
    Inventors: Cheol-Ju Yun, Chang-Hyun Cho, Tae-Young Chung
  • Publication number: 20050020086
    Abstract: A self-aligned inner gate recess channel in a semiconductor substrate includes a recess trench formed in an active region of the substrate, a gate dielectric layer formed on a bottom portion of the recess trench, recess inner sidewall spacers formed on sidewalls of the recess trench, a gate formed in the recess trench so that an upper portion of the gate protrudes above an upper surface of the substrate, wherein a thickness of the recess inner sidewall spacers causes a center portion of the gate to have a smaller width than the protruding upper portion and a lower portion of the gate, a gate mask formed on the gate layer, gate sidewall spacers formed on the protruding upper portion of gate and the gate mask, and a source/drain region formed in the active region of the substrate adjacent the gate sidewall spacers.
    Type: Application
    Filed: December 10, 2003
    Publication date: January 27, 2005
    Inventors: Ji-Young Kim, Chang-Hyun Cho, Soo-Ho Shin, Tae-Young Chung
  • Publication number: 20040241974
    Abstract: Disclosed is a method of forming a self-aligned contact structure using a sacrificial mask layer. The method includes forming a plurality of parallel interconnection patterns on a semiconductor substrate. Each of the interconnection patterns has an interconnection and a mask pattern, which are sequentially stacked. Interlayer insulating layer patterns are formed to fill gap regions between the interconnection patterns. The mask patterns are partially etched to form recessed mask patterns that define grooves between the interlayer insulating layer patterns. Then, sacrificial mask patterns filling the grooves are formed. A predetermined region of the interlayer insulating layer patterns is etched using the sacrificial mask patterns as etching masks to form a self-aligned contact hole that exposes a predetermined region of the semiconductor substrate. A spacer is formed of a sidewall of the self-aligned contact hole, and a plug surrounded by the spacer is formed in the self-aligned contact hole.
    Type: Application
    Filed: May 13, 2004
    Publication date: December 2, 2004
    Inventors: Cheol-Ju Yun, Tae-Young Chung
  • Publication number: 20040235252
    Abstract: A semiconductor device with an increased effective channel length and a method of manufacturing the same. The device includes a semiconductor substrate, a gate insulating layer disposed on the semiconductor substrate, a gate electrode structure disposed on a predetermined portion of the gate insulating layer, an insulating layer for preventing short channel disposed on the surface of the resultant structure where the gate electrode structure is disposed, and a source region and a drain region disposed in the semiconductor substrate on either side of the gate electrode structure. Both the source region and the drain region are spaced apart from the gate electrode structure by the thickness of the insulating layer. The channel length of a MOS transistor can be thereby increased.
    Type: Application
    Filed: May 13, 2004
    Publication date: November 25, 2004
    Inventors: Chang-Hyun Cho, Soo-Ho Shin, Yong-Gyu Choi, Tae-Young Chung
  • Publication number: 20040229428
    Abstract: A semiconductor memory device according to embodiments of the invention includes storage nodes and resistors. A method of manufacturing the semiconductor memory device according to some embodiments of the invention includes forming an interlayer insulation layer on a semiconductor substrate including a memory cell array area and a core/perimeter area; forming a first etch stop layer thereon; forming a plurality of contact plugs arranged linearly in at least one direction on the memory cell array area; forming a first conductive layer on the resultant structure; forming a second etch stop layer thereon; etching the second etch stop layer and the first conductive layer and forming landing pads and resistors arranged non-linearly in at least one direction; and forming storage nodes on the entire outer lateral surfaces of which are exposed, on the landing pads.
    Type: Application
    Filed: May 11, 2004
    Publication date: November 18, 2004
    Inventors: Chang-Hyun Cho, Tae-Young Chung, Yong-Seok Ahn
  • Publication number: 20040217407
    Abstract: A semiconductor device including storage nodes and a method of manufacturing the same: The method includes forming an insulating layer and an etch stop layer on a semiconductor substrate; forming storage node contact bodies to be electrically connected to the semiconductor substrate by penetrating the insulating layer and the etch stop layer; forming landing pads on the etch stop layer to be electrically connected to the storage node contact bodies, respectively; and forming storage nodes on the landing pads, respectively, the storage nodes of which outward sidewalls are completely exposed and which are arranged at an angle to each other.
    Type: Application
    Filed: April 22, 2004
    Publication date: November 4, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Cho, Tae-Young Chung, Cheol-Ju Yun, Jae-Goo Lee, Ju-Yong Lee
  • Publication number: 20040217406
    Abstract: A semiconductor device comprises a semiconductor substrate and an interlayer insulating layer formed on the semiconductor substrate. The interlayer insulating layer preferably has a contact pad formed therein. A capacitor lower electrode is electrically connected to the contact pad. The capacitor lower electrode further comprises a pad-shaped storage node electrically connected to the contact pad; and a cup-shaped storage node arranged on the pad-shaped storage node. In this manner, it is possible to increase capacitance while reducing not open contacts. Leaning of the storage nodes can also be significantly reduced.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 4, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-Young Chung, Jae-Goo Lee, Je-Min Park
  • Publication number: 20040188806
    Abstract: In one embodiment, adjacent conductive patterns are formed overlying a semiconductor substrate. The conductive patterns each have a conductive line and a capping layer. A first spacer formation layer is formed between the adjacent conductive patterns. The first spacer formation layer is formed between the top surface of the capping layer and the bottom surface of the conductive line. A conformal second spacer formation layer is formed on the conductive patterns. A first interlayer insulating layer is formed on the conformal second spacer formation layer. Next, an opening is formed to extend to a portion of the first spacer formation layer, in the first interlayer insulating layer. The portion of the first spacer formation layer is etched, using the second spacer formation layer as an etch mask, to form a single-layer spacer on sidewalls of the conductive patterns, concurrently with a contact hole.
    Type: Application
    Filed: March 31, 2003
    Publication date: September 30, 2004
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-Young Chung, Jae-Goo Lee, Dong-Jun Lee
  • Patent number: 6670663
    Abstract: A method for manufacturing a cell capacitor includes a step of forming an upper electrode and a trench for the lower electrode simultaneously in a single mask step. Further steps for manufacturing a cell capacitor includes forming a storage node contact by employing a predefined plate silicon layer and forming a capacitor dielectric using the storage contact node, as a result, it becomes possible to resolve “lift-off” problems, twin-bit failures, and misalignment.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: December 30, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoo-Sang Hwang, Sang-Ho Song, Byung Jun Park, Tae Young Chung