Patents by Inventor Taha Merghoub

Taha Merghoub has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109973
    Abstract: The present invention provides various CD40 binding molecules (including, but not limited to, antibodies), compositions comprising such CD40 binding molecules, and methods of using such CD40 binding molecules and compositions, for example for CD40-mediated activation of cells, such as antigen presenting cells.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 4, 2024
    Inventors: Danny Nejad Khalil, Taha Merghoub, Jedd D. Wolchok, Isabell Schulze, Ivo C. Lorenz
  • Publication number: 20240085417
    Abstract: Provided are methods of assigning a LAG+, LAG?, or PRO immunotype to a cancer patient based on the frequencies of LAG-3+CD8+T-cells, Ki67+CD8+T-cells, Tim-3+CD8+T-cells, and ICOS+CD8+T-cells in a peripheral blood sample from the patient, and selecting an anti-cancer therapy, for example, an immune checkpoint blockade (ICB) therapy, based on the patient's immunotype.
    Type: Application
    Filed: January 20, 2022
    Publication date: March 14, 2024
    Inventors: Margaret K. Callahan, Arshi Arora, Taha Merghoub, Katherine S. Panageas, Michael A. Postow, Ronglai Shen, Jedd D. Wolchok
  • Patent number: 11897962
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: February 13, 2024
    Assignees: AGENUS INC., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Volker Seibert, Olivier Léger, Marc Van Dijk, Taha Merghoub, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Patent number: 11884939
    Abstract: Disclosed herein are methods and compositions related to the treatment, prevention, and/or amelioration of cancer in a subject in need thereof. In particular aspects, the present technology relates to the use of poxviruses, including a recombinant modified vaccinia Ankara (MVA) virus or vaccinia virus with deletion of vaccinia host-range factor C7 (MVA?C7L and VACV?C7L, respectively), alone or in combination with immune checkpoint blocking agents, as an oncolytic and immunotherapeutic composition. In some embodiments, the technology of the present disclosure relates to a MVA?C7L or VACV?C7L virus further modified to express human Fms-like tyrosine kinase 3 ligand (Flt3L).
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Liang Deng, Stewart Shuman, Ning Yang, Taha Merghoub, Jedd Wolchok
  • Publication number: 20230406946
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 21, 2023
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20230399413
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 14, 2023
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20230390390
    Abstract: CD4+Foxp3?PD-1hi T cells (4PD1hi) that increase in tumor-bearing hosts after immune checkpoint blockade (ICB) constitute an unconventional T-cell inhibitory subset with TFH-like features, which can affect the outcome of cancer immunotherapy. Inhibition of the molecular pathway leading to the development of TFH cells and TFH-like 4PD1hi cells improves response to ICB therapy.
    Type: Application
    Filed: October 21, 2021
    Publication date: December 7, 2023
    Inventors: Jedd Wolchok, Roberta Zappasodi, Taha Merghoub
  • Publication number: 20230330225
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: March 21, 2023
    Publication date: October 19, 2023
    Inventors: Marc VAN DIJK, Cornelia Anne MUNDT, Gerd RITTER, David SCHAER, Jedd David WOLCHOK, Taha MERGHOUB, Nicholas S. WILSON, David Adam SAVITSKY, Mark Arthur FINDEIS, Dennis J. UNDERWOOD, Jean-Marie CUILLEROT, Igor Proscurshim, Olga SHEBANOVO
  • Publication number: 20230310526
    Abstract: The present invention relates generally to the fields of oncology, virology and immunotherapy. More particularly, it concerns the use of poxviruses, specifically the replication competent attenuated vaccinia virus with deletion of thymidine kinase (VC-TK?) with and without the expression of human Flt3L or GM-CSF as oncolytic and immunotherapy. The foregoing poxviruses can also be used in combination with immune checkpoint blocking agents. The foregoing poxviruses can also be inactivated via Heat or UV-treatment and the inactivated virus can be used as immunotherapy either alone or in combination with immune checkpoint blocking agents.
    Type: Application
    Filed: December 21, 2022
    Publication date: October 5, 2023
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Liang DENG, Stewart SHUMAN, Jedd WOLCHOK, Taha MERGHOUB, Weiyi WANG, Peihong DAI, Ning YANG
  • Publication number: 20230167186
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human OX40 and modulate OX40 activity, e.g., enhance, activate, or induce OX40 activity, or reduce, deactivate, or inhibit OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., enhances, activates, or induces OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., reduces, deactivates, or inhibits OX40 activity.
    Type: Application
    Filed: September 8, 2022
    Publication date: June 1, 2023
    Inventors: Marc VAN DIJK, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Hao TANG, David A. SAVITSKY, Jeremy WAIGHT, Nicholas S. WILSON
  • Publication number: 20230139506
    Abstract: In some aspects, the present invention provides heteroclitic CALRMUT peptides designed and selected to elicit an immune response to CALRMUT in subjects with JAK2 mutant-negative myeloproliferative neoplasms, nucleic acid molecules encoding such peptides, compositions comprising such peptides or nucleic acid molecules, and various associated compositions and methods.
    Type: Application
    Filed: March 17, 2021
    Publication date: May 4, 2023
    Inventors: Mathieu André-Jérôme Gigoux, Jedd D. Wolchok, Taha Merghoub
  • Patent number: 11638755
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: May 2, 2023
    Assignees: Agenus Inc., Ludwig Institute for Cancer Research Ltd., Memorial Sloan-Kettering Cancer Center
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, Nicholas Stuart Wilson, David Adam Savitsky, Mark Arthur Findeis, Dennis John Underwood, Jean-Marie Cuillerot, Igor Proscurshim, Olga Shebanova
  • Publication number: 20230108348
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human OX40 and modulate OX40 activity, e.g., enhance, activate, or induce OX40 activity, or reduce, deactivate, or inhibit OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., enhances, activates, or induces OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., reduces, deactivates, or inhibits OX40 activity.
    Type: Application
    Filed: September 8, 2022
    Publication date: April 6, 2023
    Inventors: Marc VAN DIJK, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Hao TANG, David A. SAVITSKY, Jeremy WAIGHT, Nicholas S. WILSON
  • Publication number: 20230057304
    Abstract: The present disclosure relates generally to the fields of oncology, virology and immunotherapy. It concerns poxviruses, specifically the highly attenuated modified vaccinia virus Ankara (MVA), and a recombinant modified vaccinia Ankara virus with deletion of vaccinia virulence factor E3 (MVA?E3L), each further modified to express human Fms-like tyrosine kinase 3 ligand (Flt3L) or GM-CSF. The disclosure relates to use of the foregoing recombinant viruses as cancer immunotherapeutic agents. The foregoing recombinant poxviruses can also be used in combination with immune checkpoint blockade therapy.
    Type: Application
    Filed: February 25, 2022
    Publication date: February 23, 2023
    Applicant: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Liang DENG, Stewart SHUMAN, Jedd WOLCHOK, Taha MERGHOUB, Weiyi WANG, Peihong DAI, Ning YANG
  • Publication number: 20230039577
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: June 22, 2022
    Publication date: February 9, 2023
    Inventors: Ana M. GONZALEZ, Nicholas S. Wilson, Dennis J. Underwood, Volker Seibert, Olivier Léger, Marc Van Dijk, Roberta Zappasodi, Taha Merghoub, Jedd David Wolchok, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Patent number: 11541087
    Abstract: The present invention relates generally to the fields of oncology, virology and immunotherapy. More particularly, it concerns the use of poxviruses, specifically the replication competent attenuated vaccinia virus with deletion of thymidine kinase (VC-TK?) with and without the expression of human Flt3L or GM-CSF as oncolytic and immunotherapy. The foregoing poxviruses can also be used in combination with immune checkpoint blocking agents. The foregoing poxviruses can also be inactivated via Heat or UV-treatment and the inactivated virus can be used as immunotherapy either alone or in combination with immune checkpoint blocking agents.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: January 3, 2023
    Assignee: MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Liang Deng, Stewart Shuman, Jedd Wolchok, Taha Merghoub, Weiyi Wang, Peihong Dai, Ning Yang
  • Publication number: 20220389107
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and/or human GITR receptor (GITR), including multispecific antibodies that bind, e.g., to OX40 and GITR, and compositions comprising such antibodies. The antibodies disclosed herein modulate OX40 and/or GITR activity e.g., enhance, activate, induce, reduce, deactivate, or inhibit OX40 and/or GITR activity. The present disclosure also provides methods for treating disorders, such as cancer, autoimmune diseases or disorders, or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and/or human GITR and modulates OX40 and/or GITR activity.
    Type: Application
    Filed: May 9, 2022
    Publication date: December 8, 2022
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Dennis J. UNDERWOOD, Ekaterina V. BREOUS-NYSTROM, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Marc VAN DIJK
  • Publication number: 20220380479
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and/or human GITR receptor (GITR), including multispecific antibodies that bind, e.g., to OX40 and GITR, and compositions comprising such antibodies. The antibodies disclosed herein modulate OX40 and/or GITR activity e.g., enhance, activate, induce, reduce, deactivate, or inhibit OX40 and/or GITR activity. The present disclosure also provides methods for treating disorders, such as cancer, autoimmune diseases or disorders, or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and/or human GITR and modulates OX40 and/or GITR activity.
    Type: Application
    Filed: May 9, 2022
    Publication date: December 1, 2022
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Dennis J. UNDERWOOD, Ekaterina V. BREOUS-NYSTROM, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Marc VAN DIJK
  • Publication number: 20220372149
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 24, 2022
    Inventors: Marc VAN DIJK, Cornelia Anne MUNDT, Gerd RITTER, Jedd David WOLCHOK, Taha MERGHOUB, Roberta ZAPPASODI, Rikke Baek HOLMGAARD, David SCHAER, David Adam SAVITSKY, Nicholas Stuart WILSON
  • Publication number: 20220370562
    Abstract: The present invention provides various compositions and methods useful for the treatment of pancreatic cancer, such as pancreatic ductal adenocarcinoma (PDAC), and methods for activating pancreatic tissue-specific anti-tumor T cell immunity. In some embodiments such methods involve administration of IL33. In some embodiments such methods involve administration of a PD-1 and/or PD-L1 inhibitor.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 24, 2022
    Inventors: Vinod Balachandran, Taha Merghoub, John Alec Moral