Patents by Inventor Taha Merghoub

Taha Merghoub has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10450373
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 22, 2019
    Assignees: AGENUS INC., LUDWIG INSTITUTE FOR CANCER RESEARCH LTD, MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Marc Van Dijk, Cornelia Anne Mundt, Gerd Ritter, Jedd David Wolchok, Taha Merghoub, Roberta Zappasodi, Rikke Baek Holmgaard, David Schaer, David Adam Savitsky, Nicholas Stuart Wilson
  • Publication number: 20190309082
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: March 15, 2019
    Publication date: October 10, 2019
    Inventors: Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Taha MERGHOUB, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Publication number: 20190284291
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human OX40 and modulate OX40 activity, e.g., enhance, activate, or induce OX40 activity, or reduce, deactivate, or inhibit OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., enhances, activates, or induces OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., reduces, deactivates, or inhibits OX40 activity.
    Type: Application
    Filed: February 25, 2019
    Publication date: September 19, 2019
    Inventors: Marc VAN DIJK, Ekaterina V. Breous-Nystrom, Volker Seibert, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Hao Tang, David A. Savitsky, Jeremy Waight, Nicholas S. Wilson
  • Publication number: 20190256601
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: MARC VAN DIJK, CORNELIA ANNE MUNDT, GERD RITTER, JEDD DAVID WOLCHOK, TAHA MERGHOUB, ROBERTA ZAPPASODI, RIKKE BAEK HOLMGAARD, DAVID SCHAER, DAVID ADAM SAVITSKY, NICHOLAS STUART WILSON
  • Patent number: 10323091
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: June 18, 2019
    Assignees: Agenus Inc., Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd
    Inventors: Marc van Dijk, Nicholas Stuart Wilson, Cornelia Anne Mundt, Gerd Ritter, Jedd David Wolchok, Taha Merghoub, Roberta Zappasodi, Rikke Bæk Holmgaard, David Schaer, David Adam Savitsky
  • Publication number: 20190135919
    Abstract: The instant disclosure provides antibodies that specifically bind to human CTLA-4 and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: October 19, 2018
    Publication date: May 9, 2019
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, David Adam Savitsky, Nicholas Stuart Wilson
  • Patent number: 10280226
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 7, 2019
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd
    Inventors: Volker Seibert, Olivier Léger, Marc Van Dijk, Taha Merghoub, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Patent number: 10259882
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human OX40 and modulate OX40 activity, e.g., enhance, activate, or induce OX40 activity, or reduce, deactivate, or inhibit OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., enhances, activates, or induces OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and modulates OX40 activity, e.g., reduces, deactivates, or inhibits OX40 activity.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 16, 2019
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd
    Inventors: Marc Van Dijk, Ekaterina V. Breous-Nystrom, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Hao Tang, David A. Savitsky, Nicholas S. Wilson
  • Publication number: 20190062446
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Taha MERGHOUB, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Publication number: 20190054131
    Abstract: The present invention relates generally to the fields of oncology, virology and immunotherapy. More particularly, it concerns the use of poxviruses, specifically the replication competent attenuated vaccinia virus with deletion of thymidine kinase (VC-TK?) with and without the expression of human Flt3L or GM-CSF as oncolytic and immunotherapy. The foregoing poxviruses can also be used in combination with immune checkpoint blocking agents. The foregoing poxviruses can also be inactivated via Heat or UV-treatment and the inactivated virus can be used as immunotherapy either alone or in combination with immune checkpoint blocking agents.
    Type: Application
    Filed: February 25, 2017
    Publication date: February 21, 2019
    Applicant: Memorial Sloan Kettering Cancer Center
    Inventors: Liang DENG, Stewart SHUMAN, Jedd WOLCHOK, Taha MERGHOUB, Weiyi WANG, Peihong DAI, Ning YANG
  • Publication number: 20190046640
    Abstract: The present disclosure relates generally to the fields of oncology, virology and immunotherapy. It concerns poxviruses, specifically the highly attenuated modified vaccinia virus Ankara (MVA), and a recombinant modified vaccinia Ankara virus with deletion of vaccinia virulence factor E3 (MVA?E3L), each further modified to express human Fms-like tyrosine kinase 3 ligand (Flt3L) or GM-CSF. The disclosure relates to use of the foregoing recombinant viruses as cancer immunotherapeutic agents. The foregoing recombinant poxviruses can also be used in combination with immune checkpoint blockade therapy.
    Type: Application
    Filed: February 25, 2017
    Publication date: February 14, 2019
    Applicant: Memorial Sloan Kettering Cancer Center
    Inventors: Liang DENG, Stewart SHUMAN, Jedd WOLCHOK, Taha MERGHOUB, Weiyi WANG, Peihong DAI, Ning YANG
  • Publication number: 20190010239
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: April 25, 2018
    Publication date: January 10, 2019
    Inventors: Ana M. GONZALEZ, Nicholas S. WILSON, Dennis J. UNDERWOOD, Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Roberta ZAPPASODI, Taha MERGHOUB, Jedd David WOLCHOK, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Patent number: 10155818
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: December 18, 2018
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Volker Seibert, Olivier Léger, Marc Van Dijk, Taha Merghoub, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Publication number: 20180355051
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: April 25, 2018
    Publication date: December 13, 2018
    Inventors: Ana M. GONZALEZ, Nicholas S. WILSON, Dennis J. UNDERWOOD, Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Roberta ZAPPASODI, Taha MERGHOUB, Jedd David WOLCHOK, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Patent number: 10144779
    Abstract: The instant disclosure provides antibodies that specifically bind to human CTLA-4 and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 4, 2018
    Assignees: AGENUS INC., LUDWIG INSTITUTE FOR CANCER RESEARCH LTD, MEMORIAL SLOAN KETTERING CANCER CENTER
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, David Adam Savitsky, Nicholas Stuart Wilson
  • Publication number: 20180244793
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 30, 2018
    Inventors: Ana M. GONZALEZ, Nicholas S. WILSON, Deninis J. UNDERWOOD, Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Roberta ZAPPASODI, Taha MERGHOUB, Jedd David WOLCHOK, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Publication number: 20180236062
    Abstract: The present disclosure relates to infection-competent, but nonreplicative inactivated modified vaccinia Ankara (MVA) and its use as immunotherapy, alone, or in combination with immune checkpoint blocking agents for the treatment of malignant solid tumors. Particular embodiments relate to inducing an immune response in a subject diagnosed with a solid malignant tumor.
    Type: Application
    Filed: February 25, 2016
    Publication date: August 23, 2018
    Applicant: Memorial Sloan-Kettering Cancer Center
    Inventors: Liang Deng, Stewart Shuman, Jedd D. Wolchok, Taha Merghoub, Peihong Dai, Weiyi Wang
  • Publication number: 20180185481
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: December 7, 2017
    Publication date: July 5, 2018
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, David Schaer, Jedd David Wolchok, Taha Merghoub, Nicholas Stuart Wilson, David Adam Savitsky, Mark Arthur Findeis, Dennis John Underwood, Jean-Marie Cuillerot, Igor Proscurshim, Olga Shebanova
  • Publication number: 20180078591
    Abstract: The present disclosure relates to modified vaccinia Ankara (MVA) virus or MVAAE3L delivered intratumorally or systemically as an anticancer immunotherapeutic agent, alone, or in combination with one or more immune checkpoint blocking agents for the treatment of malignant solid tumors. Particular embodiments relate to mobilizing the host's immune system to mount an immune response against the tumor.
    Type: Application
    Filed: April 18, 2016
    Publication date: March 22, 2018
    Applicant: Memorial Sloan Kettering Cancer Center
    Inventors: Liang DENG, Jedd WOLCHOK, Taha MERGHOUB, Stewart SHUMAN, Peihong DAI, Weiyi WANG
  • Publication number: 20170081409
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 23, 2017
    Inventors: Marc van Dijk, Cornelia Anne Mundt, Gerd Ritter, Jedd David Wolchok, Taha Merghoub, Roberta Zappasodi, Rikke Bæk Holmgaard, David Schaer, David Adam Savitsky, Nicholas Stuart Wilson