Patents by Inventor Tahir Ghani

Tahir Ghani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837648
    Abstract: Thin film transistor structures and processes are disclosed that include stacked nanowire bodies to mitigate undesirable short channel effects, which can occur as gate lengths scale down to sub-100 nanometer (nm) dimensions, and to reduce external contact resistance. In an example embodiment, the disclosed structures employ a gate-all-around architecture, in which the gate stack (including a high-k dielectric layer) wraps around each of the stacked channel region nanowires (or nanoribbons) to provide improved electrostatic control. The resulting increased gate surface contact area also provides improved conduction. Additionally, these thin film structures can be stacked with relatively small spacing (e.g., 1 to 20 nm) between nanowire bodies to increase integrated circuit transistor density. In some embodiments, the nanowire body may have a thickness in the range of 1 to 20 nm and a length in the range of 5 to 100 nm.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11837641
    Abstract: Gate-all-around integrated circuit structures having adjacent deep via substrate contact for sub-fin electrical contact are described. For example, an integrated circuit structure includes a conductive via on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the conductive via. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 5, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani, Kalyan Kolluru, Nathan Jack, Nicholas Thomson, Ayan Kar, Benjamin Orr
  • Publication number: 20230387121
    Abstract: A wrap-around source/drain trench contact structure is described. A plurality of semiconductor fins extend from a semiconductor substrate. A channel region is disposed in each fin between a pair of source/drain regions. An epitaxial semiconductor layer covers the top surface and sidewall surfaces of each fin over the source/drain regions, defining high aspect ratio gaps between adjacent fins. A pair of source/drain trench contacts are electrically coupled to the epitaxial semiconductor layers. The source/drain trench contacts comprise a conformal metal layer and a fill metal. The conformal metal layer conforms to the epitaxial semiconductor layers. The fill metal comprises a plug and a barrier layer, wherein the plug fills a contact trench formed above the fins and the conformal metal layer, and the barrier layer lines the plug to prevent interdiffusion of the conformal metal layer material and plug material.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Joseph STEIGERWALD, Tahir GHANI, Oleg GOLONZKA
  • Publication number: 20230387324
    Abstract: Gate-all-around integrated circuit structures having nanowires with tight vertical spacing, and methods of fabricating gate-all-around integrated circuit structures having nanowires with tight vertical spacing, are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal silicon nanowires. A vertical spacing between vertically adjacent silicon nanowires is less than 6 nanometers. A gate stack is around the vertical arrangement of horizontal silicon nanowires. A first source or drain structure is at a first end of the vertical arrangement of horizontal silicon nanowires, and a second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal silicon nanowires.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Tahir GHANI, Susmita GHOSE, Zachary GEIGER
  • Publication number: 20230387315
    Abstract: Thin film transistors having double gates are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate stack is on the insulator layer. A polycrystalline channel material layer is on the first gate stack. A second gate stack is on a first portion of the polycrystalline channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack, the first conductive contact on a second portion of the channel material layer. A second conductive contact is adjacent the second side of the second gate stack, the second conductive contact on a third portion of the channel material layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 30, 2023
    Inventors: Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY
  • Patent number: 11832438
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 28, 2023
    Assignee: Intel Corporation
    Inventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Jared Stoeger, Yu-Wen Huang, Shu Zhou
  • Patent number: 11824107
    Abstract: Wrap-around contact structures for semiconductor nanowires and nanoribbons, and methods of fabricating wrap-around contact structures for semiconductor nanowires and nanoribbons, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above a first portion of a semiconductor sub-fin. A gate structure surrounds a channel portion of the semiconductor nanowire. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor sub-fin, the epitaxial structure having substantially vertical sidewalls in alignment with the second portion of the semiconductor sub-fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor sub-fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Tahir Ghani, Stephen Cea, Biswajeet Guha
  • Patent number: 11824116
    Abstract: Gate-all-around integrated circuit structures having devices with channel-to-substrate electrical contact are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A channel region of the first vertical arrangement of horizontal nanowires is electrically coupled to the first fin by a semiconductor material layer directly between the first vertical arrangement of horizontal nanowires and the first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A second vertical arrangement of horizontal nanowires is above a second fin. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Ayan Kar, Nicholas Thomson, Benjamin Orr, Nathan Jack, Kalyan Kolluru, Tahir Ghani
  • Publication number: 20230360972
    Abstract: Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Oleg GOLONZKA, Swaminathan SIVAKUMAR, Charles H. WALLACE, Tahir GHANI
  • Publication number: 20230352598
    Abstract: An integrated circuit includes: a gate dielectric; a first layer adjacent to the gate dielectric; a second layer adjacent to the first layer, the second layer comprising an amorphous material; a third layer adjacent to the second layer, the third layer comprising a crystalline material; and a source or drain at least partially adjacent to the third layer. In some cases, the crystalline material of the third layer is a first crystalline material, and the first layer comprises a second crystalline material, which may be the same as or different from the first crystalline material. In some cases, the gate dielectric includes a high-K dielectric material. In some cases, the gate dielectric, the first layer, the second layer, the third layer, and the source or drain are part of a back-gate transistor structure (e.g., back-gate TFT), which may be part of a memory structure (e.g., located within an interconnect structure).
    Type: Application
    Filed: June 30, 2023
    Publication date: November 2, 2023
    Applicant: Intel Corporation
    Inventors: Van H. Le, Abhishek A. Sharma, Gilbert Dewey, Kent Millard, Jack Kavalieros, Shriram Shivaraman, Tristan A. Tronic, Sanaz Gardner, Justin R. Weber, Tahir Ghani, Li Huey Tan, Kevin Lin
  • Publication number: 20230352561
    Abstract: Gate-all-around integrated circuit structures having oxide sub-fins, and methods of fabricating gate-all-around integrated circuit structures having oxide sub-fins, are described. For example, an integrated circuit structure includes an oxide sub-fin structure having a top and sidewalls. An oxidation catalyst layer is on the top and sidewalls of the oxide sub-fin structure. A vertical arrangement of nanowires is above the oxide sub-fin structure. A gate stack is surrounding the vertical arrangement of nanowires and on at least the portion of the oxidation catalyst layer on the top of the oxide sub-fin structure.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Leonard P. GULER, Biswajeet GUHA, Tahir GHANI, Swaminathan SIVAKUMAR
  • Publication number: 20230343826
    Abstract: Embodiments of the disclosure include integrated circuit structures having source or drain dopant diffusion blocking layers. In an example, an integrated circuit structure includes a fin including silicon. A gate structure is over a channel region of the fin, the gate structure having a first side opposite a second side. A first source or drain structure is at the first side of the gate structure. A second source or drain structure is at the second side of the gate structure. The first and second source or drain structures include a first semiconductor layer and a second semiconductor layer. The first semiconductor layer is in contact with the channel region of the fin, and the second semiconductor layer is on the first semiconductor layer. The first semiconductor layer has a greater concentration of germanium than the second semiconductor layer, and the second semiconductor layer includes boron dopant impurity atoms.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Cory BOMBERGER, Anand MURTHY, Anupama BOWONDER, Aaron BUDREVICH, Tahir GHANI
  • Patent number: 11799015
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, a method includes forming a plurality of fins and forming a plurality of gate structures over the plurality of fins. A dielectric material structure is formed between adjacent ones of the plurality of gate structures. A portion of a first of the plurality of gate structures is removed to expose a first portion of each of the plurality of fins, and a portion of a second of the plurality of gate structures is removed to expose a second portion of each of the plurality of fins. The exposed first portion of each of the plurality of fins is removed, but the exposed second portion of each of the plurality of fins is not removed.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Tahir Ghani, Byron Ho, Michael L. Hattendorf, Christopher P. Auth
  • Patent number: 11799037
    Abstract: Gate-all-around integrated circuit structures having asymmetric source and drain contact structures, and methods of fabricating gate-all-around integrated circuit structures having asymmetric source and drain contact structures, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a fin. A gate stack is over the vertical arrangement of nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of nanowires. A first conductive contact structure is coupled to the first epitaxial source or drain structure. A second conductive contact structure is coupled to the second epitaxial source or drain structure. The second conductive contact structure is deeper along the fin than the first conductive contact structure.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Mauro J. Kobrinsky, Tahir Ghani
  • Patent number: 11798991
    Abstract: A device is disclosed. The device includes a channel, a first source-drain region adjacent a first portion of the channel, the first source-drain region including a first crystalline portion that includes a first region of metastable dopants, a second source-drain region adjacent a second portion of the channel, the second source-drain region including a second crystalline portion that includes a second region of metastable dopants. A gate conductor is on the channel.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Rishabh Mehandru, Willy Rachmady, Harold Kennel, Tahir Ghani
  • Patent number: 11799009
    Abstract: Gate-all-around integrated circuit structures having adjacent structures for sub-fin electrical contact are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A vertical arrangement of horizontal nanowires is above a fin protruding from the semiconductor substrate. A channel region of the vertical arrangement of horizontal nanowires is electrically isolated from the fin. The fin is electrically coupled to the semiconductor island. A gate stack is over the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, William Hsu, Chung-Hsun Lin, Kinyip Phoa, Oleg Golonzka, Tahir Ghani
  • Patent number: 11784239
    Abstract: Disclosed herein are tri-gate transistor arrangements, and related methods and devices. For example, in some embodiments, a transistor arrangement may include a fin stack shaped as a fin extending away from a base, and a subfin dielectric stack. The fin includes a subfin portion and a channel portion, the subfin portion being closer to the base than the channel portion. The subfin dielectric stack includes a transistor dielectric material, and a fixed charge liner material disposed between the transistor dielectric material and the subfin portion of the fin.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Sean T. Ma, Aaron D. Lilak, Justin R. Weber, Harold W. Kennel, Willy Rachmady, Gilbert W. Dewey, Cheng-Ying Huang, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Publication number: 20230317786
    Abstract: Gate-all-around integrated circuit structures having necked features, and methods of fabricating gate-all-around integrated circuit structures having necked features, are described. In an example, an integrated circuit structure includes a vertical stack of horizontal nanowires. Each nanowire of the vertical stack of horizontal nanowires has a channel portion with a first vertical thickness and has end portions with a second vertical thickness greater than the first vertical thickness. A gate stack is surrounding the channel portion of each nanowire of the vertical stack of horizontal nanowires.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 5, 2023
    Inventors: Rishabh MEHANDRU, Cory WEBER, Varun MISHRA, Tahir GHANI, Pratik PATEL, Wonil CHUNG, Mohammad HASAN
  • Publication number: 20230317731
    Abstract: Integrated circuit structures having conductive structures in fin isolation regions are described. In an example, an integrated circuit structure includes a vertical stack of horizontal nanowires over a sub-fin. The integrated circuit structure also includes a gate structure. The gate structure includes a first gate structure portion over the vertical stack of horizontal nanowires, a second gate structure portion laterally adjacent to the first gate structure portion, wherein the second gate structure portion is not over a channel structure, and a gate cut between the first gate structure portion and the second gate structure portion.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Leonard P. GULER, Mauro J. KOBRINSKY, Mohit K. HARAN, Marni NABORS, Tahir GHANI, Charles H. WALLACE, Allen B. GARDINER, Sukru YEMENICIOGLU
  • Publication number: 20230317808
    Abstract: Embodiments of the present disclosure include integrated circuit structures having differentiated channel sizing, and methods of fabricating integrated circuit structures having differentiated channel sizing. In an example, a structure includes a memory region having a first vertical stack of horizontal nanowires having a first number of nanowires. The integrated circuit structure also includes a logic region having a second vertical stack of horizontal nanowires spaced apart from the first vertical stack of horizontal nanowires. The second vertical stack of horizontal nanowires has a second number of nanowires less than the first number of nanowires.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 5, 2023
    Inventors: Rishabh MEHANDRU, Cory WEBER, Clifford ONG, Sukru YEMENICIOGLU, Tahir GHANI, Brian GREENE