Patents by Inventor TAIWAN SEMICONDUCTOR MANUFACTURING

TAIWAN SEMICONDUCTOR MANUFACTURING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140264719
    Abstract: An integrated circuit device incorporating a plurality of isolation trench structures configured for disparate applications and a method of forming the integrated circuit are disclosed. In an exemplary embodiment, a substrate having a first region and a second region is received. A first isolation trench is formed in the first region, and a second isolation trench is formed in the second region. A first liner layer is formed in the first isolation trench, and a second liner layer is formed in the second isolation trench. The second liner layer has a physical characteristic that is different from a corresponding physical characteristic of the first liner layer. An implantation procedure is performed on the second isolation trench and the second liner layer formed therein. The physical characteristic of the second liner layer may be selected to enhance an implantation depth or an implantation uniformity compared to the first liner layer.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140266344
    Abstract: A varainductor including a signal line disposed over a substrate. The varainductor further includes a first ground plane over the substrate, the first ground plane disposed on a first side of the signal line, and a second ground plane over the substrate, the second ground plane disposed on a second side of the signal line opposite the first side of the signal line. The varainductor further includes a first floating plane over the substrate, the first floating plane disposed between the first ground plane and the signal line, and a second floating plane over the substrate, the second floating plane disposed between the second ground plane and the signal line. The varainductor further includes an array of switches, the array of switches is configured to selectively connect the first ground plane to the first floating plane, and to selectively connect the second ground plane to the second floating plane.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140264609
    Abstract: A device having a first active transistor, a second active transistor, an isolation gate structure, and an active region underlying each of the first active transistor, the second active transistor, and the isolation gate structure is provided. The first and second active transistors each have a metal gate with a first type of conductivity (e.g., one of n-type and p-type). The isolation gate structure interposes the first and second active transistors. The isolation gate structure has a metal gate with a second type of conductivity (e.g., the other one of n-type and p-type). A method of fabricating devices such as this are also described.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140264773
    Abstract: In a method, a layout of a device having a pattern of features is provided. The method continues to include identifying a first portion of at least one feature of the plurality of features. An image criteria for the first portion may be assigned. A lithography optimization parameter is determined based on the assigned image criteria for the first portion. Finally, the first portion of the at least one feature is imaged onto a semiconductor substrate using the determined lithography optimization parameter.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140262796
    Abstract: A metal plating apparatus includes a chemical bath chamber, an anode disposed at a bottom portion of the chemical bath chamber, and a cathode disposed at a top portion of the chemical bath chamber. A solenoid coil is disposed within the chemical bath chamber between the anode and the cathode. The solenoid coil is arranged to apply a magnetic field during a metal plating process in a direction from the anode to the cathode.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140273379
    Abstract: Embodiments of mechanisms for epitaxially growing one or more doped silicon-containing materials to form source and drain regions of finFET devices are provided in this disclosure. The dopants in the one or more doped silicon-containing materials can be driven into the neighboring lightly-doped-drain (LDD) regions by thermal anneal to dope the regions. The epitaxially growing process uses a cyclical deposition/deposition/etch (CDDE) process. In each cycle of the CDDE process, a first and a second doped materials are formed and a following etch removes most of the second doped material. The first doped material has a higher dopant concentration than the second material and is protected from the etching process by the second doped material. The CDDE process enables forming a highly doped silicon-containing material.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140264926
    Abstract: A via opening comprising an etch stop layer (ESL) opening and methods of forming the same are provided which can be used in the back end of line (BEOL) process of IC fabrication. A metal feature is provided with a first part within a dielectric layer and with a top surface. An ESL is formed with a bottom surface of the ESL above and in contact with the dielectric layer, and a top surface of the ESL above the bottom surface of the ESL. An opening at the ESL is formed exposing the top surface of the metal feature; wherein the opening at the ESL has a bottom edge of the opening above the bottom surface of the ESL, a first sidewall of the opening at a first side of the metal feature, and a second sidewall of the opening at a second side of the metal feature.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140272718
    Abstract: A method for being used in a lithography process is provided. The method includes receiving a first mask, a second mask and a substrate with a set of baseline registration marks. A first set of registration marks is formed on the substrate using the first mask and a first exposure tool, and a first set of overlay errors is determined. The first set of registration marks is removed and a second set of registration marks is formed on the substrate using the second mask and a second exposure tool. A second set of overlay errors is determined. A set of tool-induced overlay errors is generated from the first and second sets of overlay errors and used in fabricating a third mask. The third mask can then be used in the lithography process to accommodate the overlay errors caused by different exposure tools, different masks, and different mask writers.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140273468
    Abstract: A method includes forming a first pattern having a first opening on a semiconductor substrate. The first opening is then filled. A second pattern of a first and second feature, interposed by the filled opening, is formed on the semiconductor substrate. Spacer elements then are formed on sidewalls of the filled opening, the first feature and the second feature. After forming the spacer elements, the material comprising first and second features is removed to form a second opening and a third opening. The filled opening, the second opening and the third opening are used as a masking element to etch a target layer of the substrate.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140269805
    Abstract: An embodiment is a semiconductor device comprising an optical device over a first substrate, a vertical waveguide on a top surface of the optical device, the vertical waveguide having a first refractive index, and a capping layer over the vertical waveguide, the capping layer configured to be a lens for the vertical waveguide and the capping layer having a second refractive index.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140266138
    Abstract: A band gap reference circuit is provided that includes a first resistor (R1), a second resistor (R2), a third resistor (R3), a fourth resistor (Ra), a fifth resistor (Rb), a capacitor (Ca), an operational amplifier A, a first field effect transistor (FET) (P1), a second FET (P2), a third FET (P3), a fourth FET (Pa), a first bipolar junction transistor (BJT) (Q1), a second BJT (Q2), and a third BJT (Q3). P3 and Rb are used to control Pa, which is configured to control current flow to a reference node, and thus a reference voltage (Vref) output by the band gap reference circuit. The band gap reference circuit is configured to output a substantially constant reference voltage and is less sensitive or susceptible to noise from a power supply. Additionally, the band gap reference circuit prevents Vref from overshooting when the band gap circuit is enabled.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Taiwan Semiconductor Manufacturing Company Limited
  • Publication number: 20140269804
    Abstract: A semiconductor device, a package structure, and methods of forming the same are disclosed. An embodiment is a semiconductor device comprising a first optical device over a first substrate, a vertical waveguide on a top surface of the first optical device, and a second substrate over the vertical waveguide. The semiconductor device further comprises a lens capping layer on a top surface of the second substrate, wherein the lens capping layer is aligned with the vertical waveguide, and a second optical device over the lens capping layer.
    Type: Application
    Filed: May 1, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140264750
    Abstract: A passive circuit device incorporating a resistor and a capacitor and a method of forming the circuit device are disclosed. In an exemplary embodiment, the circuit device comprises a substrate and a passive device disposed on the substrate. The passive device includes a bottom plate disposed over the substrate, a top plate disposed over the bottom plate, a spacing dielectric disposed between the bottom plate and the top plate, a first contact and a second contact electrically coupled to the top plate, and a third contact electrically coupled to the bottom plate. The passive device is configured to provide a target capacitance and a first target resistance. The passive device may also include a second top plate disposed over the bottom plate and configured to provide a second target resistance, such that the second target resistance is different from the first target resistance.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company Ltd.
  • Publication number: 20140264661
    Abstract: Embodiments of the present disclosure include MEMS devices and methods for forming MEMS devices. An embodiment is a method for forming a microelectromechanical system (MEMS) device, the method including forming a MEMS wafer having a first cavity, the first cavity having a first pressure, and bonding a carrier wafer to a first side of the MEMS wafer, the bonding forming a second cavity, the second cavity having a second pressure, the second pressure being greater than the first pressure. The method further includes bonding a cap wafer to a second side of the MEMS wafer, the second side being opposite the first side, the bonding forming a third cavity, the third cavity having a third pressure, the third pressure being greater than the first pressure and less than the second pressure.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140269021
    Abstract: Among other things, techniques and systems are provided for devising a schedule for performing read/write operations on a memory cell. A control signal is provided to timing logic. Using one or more properties of the control signal, such as a voltage property, the timing logic is configured to adjust a time window during which at least one of a read operation or a write operation is performed within a cycle. In this way, the timing logic affects a dynamic switch between an early-read operation, a late-read operation, an early-write operation, a late-write operation, a read-then-write operation, and a write-then-read operation between cycles. In some embodiments, the memory cell for which the schedule is devised is an SRAM cell, such as a six-transistor SRAM cell.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 18, 2014
    Inventor: Taiwan Semiconductor Manufacturing Company Limited
  • Publication number: 20140266542
    Abstract: A system and method for providing and programming a programmable inductor is provided. The structure of the programmable inductor includes multiple turns, with programmable interconnects incorporated at various points around the turns to provide a desired isolation of the turns during programming. In an embodiment the programming may be controlled using the size of the vias, the number of vias, or the shapes of the interconnects.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140273521
    Abstract: A system and method for photoresists is provided. In an embodiment a cross-linking or coupling reagent is included within a photoresist composition. The cross-linking or coupling reagent will react with the polymer resin within the photoresist composition to cross-link or couple the polymers together, resulting in a polymer with a larger molecular weight. This larger molecular weight will cause the dissolution rate of the photoresist to decrease, leading to a better depth of focus for the line.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140264608
    Abstract: A device includes a semiconductor substrate, and isolation regions extending into the semiconductor substrate. A semiconductor strip is between and contacting the isolation regions. A semiconductor fin overlaps, and is joined to, the semiconductor strip. A ditch extends from a top surface of the isolation regions into the isolation regions, wherein the ditch adjoins the semiconductor fin.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Publication number: 20140264717
    Abstract: A method of forming a fin structure of a semiconductor device includes providing a substrate, creating a mandrel pattern over the substrate, depositing a first spacer layer over the mandrel pattern, and removing portions of the first spacer layer to form first spacer fins. The method also includes performing a first fin cut process to remove a subset of the first spacer fins, depositing a second spacer layer over the un-removed first spacer fins, and removing portions of the second spacer layer to form second spacer fins. The method further includes forming fin structures, and performing a second fin cut process to remove a subset of the fin structures.
    Type: Application
    Filed: April 26, 2013
    Publication date: September 18, 2014
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
  • Publication number: 20140268439
    Abstract: One or more electrostatic discharge (ESD) control circuit are disclosed herein. In an embodiment, an ESD control circuit has first and second trigger transistors, first and second ESD transistors, and first and second feedback transistors. The ESD transistors provide ESD current paths for ESD current generated during an ESD event. The first and second trigger transistors are on during normal operation to maintain the ESD transistors in an off state. During an ESD event, the first and second transistors are turned off to enable the first and second ESD transistors to provide ESD current paths. The first and second feedback transistors turn on during an ESD event to reinforce the on state of the ESD transistors and to reinforce the off state of the trigger transistors. In this way, the ESD control circuit stably provides multiple ESD current paths to discharge ESD current.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Taiwan Semiconductor Manufacturing Company Limited