Patents by Inventor Takaaki Ukeda

Takaaki Ukeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140014934
    Abstract: A transistor manufacturing method includes: forming a gate electrode above a substrate; forming a gate insulator above the gate electrode; forming source and drain electrodes above the gate insulator; forming a sacrificial layer above the source and drain electrodes; forming a partition wall layer above the sacrificial layer; forming an opening by patterning the partition wall layer to partly expose the sacrificial layer; removing the sacrificial layer to expose the source and drain electrodes; and forming an organic semiconductor layer to cover the source and drain electrodes and the gate insulator, wherein the source and drain electrodes occupy 50% or more of a surface area of the opening, and the source and drain electrodes are spaced apart at an interval smaller than an average granular diameter of crystals each of which is at least partly positioned above the source or drain electrode.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 16, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Takaaki Ukeda, Akihito Miyamoto
  • Publication number: 20130334513
    Abstract: A thin film transistor element is formed in each of a first aperture and a second aperture defined by partition walls, which further define a third aperture that is adjacent to the first aperture with a gap therebetween and is located in a direction, from the first aperture, differing from a direction of the second aperture. In plan view, at a bottom portion of the first aperture, a center of area of a liquid-philic layer portion is offset from a center of area of the bottom portion in a direction differing from a direction of the third aperture, and at a bottom portion of one of the first and second apertures, a center of area of a liquid-philic layer portion is offset from a center of area of the bottom portion in a direction differing from a direction of the other one of the first and second apertures.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yuko OKUMOTO, Akihito MIYAMOTO, Takaaki UKEDA
  • Publication number: 20130328034
    Abstract: In a thin film transistor device, partition walls define first, second, and third apertures. In plan view, at a bottom portion of the first aperture, a center of a total of areas of a source electrode portion and a drain electrode portion is offset from a center of area of the bottom portion in a direction differing from a direction of the third aperture, and at a bottom portion of one of the first and second apertures, a center a total of areas of a source electrode portion and a drain electrode portion is offset from a center of area of the bottom portion in a direction differing from a direction of the other one of the first and second apertures.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yuko OKUMOTO, Akihito MIYAMOTO, Takaaki UKEDA
  • Publication number: 20130328033
    Abstract: A thin film transistor element is formed in each of adjacent first and second apertures defined by partition walls. In plan view of a bottom portion of the first aperture, a center of a total of areas of a source electrode portion and a drain electrode portion is offset from a center of area of the bottom portion in a direction opposite a direction of the second aperture, and in plan view of a bottom portion of the second aperture, a center of a total of areas of a source electrode portion and a drain electrode portion is offset from a center of area of the bottom portion in a direction opposite a direction of the first aperture.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yuko OKUMOTO, Akihito MIYAMOTO, Takaaki UKEDA
  • Publication number: 20130328035
    Abstract: A thin film transistor element includes a gate electrode, an insulating layer formed on the gate electrode, and partition walls formed on the insulating layer and defining a first aperture above the gate electrode. The thin film transistor element further includes, at a bottom portion of the first aperture, a source electrode and a drain electrode that are in alignment with each other with a gap therebetween, a liquid-philic layer, and a semiconductor layer that covers the source electrode, the drain electrode, and the liquid-philic layer as well as gaps therebetween. The liquid-philic layer has higher liquid philicity than the insulating layer, and in plan view of the bottom portion of the first aperture, a center of area of the liquid-philic layer is offset from a center of area of the bottom portion of the first aperture.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yuko OKUMOTO, Akihito MIYAMOTO, Takaaki UKEDA
  • Patent number: 8436355
    Abstract: Disclosed is a method that includes: forming a gate electrode on a substrate, then forming an insulation layer so as to completely cover the gate electrode, thereafter forming a semiconductor layer on the insulation layer, and then forming a crystallization-inducing metal layer on the semiconductor layer; removing the part of at least the crystallization-inducing metal layer that is over a channel region of the semiconductor layer; forming source and drain electrodes at a location which is over source and drain regions respectively located at opposite sides with respect to the channel region of the semiconductor layer and is above the crystallization-inducing metal layer; and heating the crystallization-inducing metal layer so as to form a silicide layer of a crystallization-inducing metal.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: May 7, 2013
    Assignee: Panasonic Corporation
    Inventors: Takaaki Ukeda, Tohru Saitoh, Kazunori Komori, Sadayoshi Hotta
  • Patent number: 8368063
    Abstract: An organic semiconductor device includes a gate electrode above a substrate. A gate insulation film is over the gate electrode. A first electrode is above the gate insulation film. A second electrode is above the gate insulation film. The second electrode is annular and surrounds the first electrode. An organic semiconductor layer is above the gate insulation film and over the first electrode. The second electrode surrounds the organic semiconductor layer and defines an outer periphery of the organic semiconductor layer. A conductive guiding member is above the gate insulation film. The conductive guiding member is annular and surrounds the second electrode. A protective film is above the gate insulation film and over the organic semiconductor layer and the second electrode. The conductive guiding member surrounds the protective film and defines an outer periphery of the protective film.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: February 5, 2013
    Assignee: Panasonic Corporation
    Inventor: Takaaki Ukeda
  • Publication number: 20110248248
    Abstract: An organic semiconductor device includes a gate electrode above a substrate. A gate insulation film is over the gate electrode. A first electrode is above the gate insulation film. A second electrode is above the gate insulation film. The second electrode is annular and surrounds the first electrode. An organic semiconductor layer is above the gate insulation film and over the first electrode. The second electrode surrounds the organic semiconductor layer and defines an outer periphery of the organic semiconductor layer. A conductive guiding member is above the gate insulation film. The conductive guiding member is annular and surrounds the second electrode. A protective film is above the gate insulation film and over the organic semiconductor layer and the second electrode. The conductive guiding member surrounds the protective film and defines an outer periphery of the protective film.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 13, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Takaaki UKEDA
  • Publication number: 20100320467
    Abstract: Disclosed is a method that includes: forming a gate electrode on a substrate, then forming an insulation layer so as to completely cover the gate electrode, thereafter forming a semiconductor layer on the insulation layer, and then forming a crystallization-inducing metal layer on the semiconductor layer; removing the part of at least the crystallization-inducing metal layer that is over a channel region of the semiconductor layer; forming source and drain electrodes at a location which is over source and drain regions respectively located at opposite sides with respect to the channel region of the semiconductor layer and is above the crystallization-inducing metal layer; and heating the crystallization-inducing metal layer so as to form a silicide layer of a crystallization-inducing metal.
    Type: Application
    Filed: November 14, 2008
    Publication date: December 23, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Takaaki Ukeda, Tohru Saitoh, Kazunori Komori, Sadayoshi Hotta
  • Publication number: 20100194719
    Abstract: A thin-film transistor includes a substrate, a gate electrode over the substrate, an insulating layer over the gate electrode, and a semiconductor layer over the insulating layer. The semiconductor layer includes a channel region, a source region, and a drain region. A source electrode is over the source region, and a drain electrode is over the drain region. The source electrode and the drain electrode each comprise Ni and a metal other than Ni. The channel region, the source region, and the drain region comprise at least one of a polycrystalline silicon that is formed by crystallizing an amorphous silicon layer by thermally diffusing the Ni in the source electrode and the drain electrode into the semiconductor layer and a microcrystalline silicon that is formed by crystallizing an amorphous silicon layer by thermally diffusing the Ni in the source electrode and the drain electrode into the semiconductor layer.
    Type: Application
    Filed: April 8, 2010
    Publication date: August 5, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Tohru SAITOH, Takaaki UKEDA, Kazunori KOMORI, Sadayoshi HOTTA
  • Patent number: 7126174
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 24, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Patent number: 6967409
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: November 22, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Publication number: 20050156220
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Application
    Filed: March 17, 2005
    Publication date: July 21, 2005
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Publication number: 20050093089
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Application
    Filed: November 24, 2004
    Publication date: May 5, 2005
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Patent number: 6847119
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: January 25, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Patent number: 6709950
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: March 23, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Publication number: 20030205820
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Application
    Filed: June 5, 2003
    Publication date: November 6, 2003
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto
  • Patent number: 6492672
    Abstract: A MOS transistor includes a gate oxide film, and a gate electrode which is formed by a lamination of first and second conductor films. A capacitive element includes a lower capacitive electrode formed of the first conductor film, a capacitive film made of an insulating film which is different from the gate oxide film, an upper capacitive electrode formed of the second conductor film on the capacitive film, and a leading electrode of the lower capacitive electrode formed of the second conductor film. At the same number of steps as in the case where the gate oxide film is used as the capacitive film, a semiconductor device can be manufactured with the capacitive film provided, the capacitive film being made of a nitride film or the like that is different from the gate oxide film. Consequently, a capacitive film having a great capacitance value per unit area is used so that the occupied area can be reduced and an increase in manufacturing cost can be controlled.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: December 10, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Toshiki Yabu, Takashi Uehara, Takashi Nakabayashi, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada
  • Patent number: 6346736
    Abstract: The top surface of a P-type semiconductor substrate is partitioned into an active region to be formed with an element and an isolation region surrounding the active region. The isolation region is composed of trench portions and dummy semiconductor portions. An interlayer insulating film is deposited on the substrate, followed by a wire formed thereon. In each of the semiconductor portions, an impurity diffusion layer is formed simultaneously with the implantation of ions into the element so that a PN junction is formed between the impurity diffusion layer and the silicon substrate. A capacitance component of the wiring-to-substrate capacitance in the region containing the semiconductor portions is obtained by adding in series the capacitance in the impurity diffusion layer to the capacitance in the interlayer insulating film, which is smaller than the capacitance only in the interlayer insulating film.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: February 12, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takaaki Ukeda, Chiaki Kudo, Toshiki Yabu
  • Publication number: 20010054741
    Abstract: An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area.
    Type: Application
    Filed: July 11, 2001
    Publication date: December 27, 2001
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO.,LTD.
    Inventors: Mizuki Segawa, Isao Miyanaga, Toshiki Yabu, Takashi Nakabayashi, Takashi Uehara, Kyoji Yamashita, Takaaki Ukeda, Masatoshi Arai, Takayuki Yamada, Michikazu Matsumoto