Patents by Inventor Takahide Ikeda

Takahide Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5661329
    Abstract: A semiconductor integrated circuit device includes an element separating first and second grooves formed to surround active regions to be formed with a semiconductor element. In addition a third groove is formed to surround at least a portion of the first groove, when viewed from a plane view. In the semiconductor integrated circuit device, the active regions and an element separating region of a silicon layer are insulated from each other by the separating grooves extending from the main surface of the silicon layer to an underlying insulating layer, and are fed with a common fixed potential.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: August 26, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Toshiro Hiramoto, Nobuo Tamba, Masami Usami, Takahide Ikeda, Kazuo Tanaka, Atsuo Watanabe, Satoru Isomura, Toshiyuki Kikuchi, Toru Koizumi
  • Patent number: 5643805
    Abstract: A bipolar device having a level difference between the contact area level of a base electrode and a base region in a silicon substrate, and the contact area level of an emitter electrode and an emitter region in the silicon substrate in the range of 0.03 .mu.m to 0.1 .mu.m by removing undesirable impurities from the emitter region and a predetermined horizontal distance between a sidewall and a device isolation film does not generate dislocation and show good electric characteristics.
    Type: Grant
    Filed: March 10, 1995
    Date of Patent: July 1, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Ohta, Hideo Miura, Hiroo Masuda, Yoichi Tamaki, Takahide Ikeda, Asao Nishimura, Takashi Hashimoto
  • Patent number: 5619069
    Abstract: A bipolar device having a level difference between the contact area level of a base electrode and a base region in a silicon substrate, and the contact area level of an emitter electrode and an emitter region in the silicon substrate in the range of 0.03 .mu.m to 0.1 .mu.m by removing undesirable impurities from the emitter region and a predetermined horizontal distance between a sidewall and a device isolation film does not generate dislocation and show good electric characteristics.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: April 8, 1997
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Ohta, Hideo Miura, Hiroo Masuda, Yoichi Tamaki, Takahide Ikeda, Asao Nishimura, Takashi Hashimoto
  • Patent number: 5512497
    Abstract: Disclosed is a bipolar-CMOS LSI manufactured by a simplified process and realizing a higher density of integration as well as a higher operating speed, in which a base lead-out electrode of a bipolar transistor and respective gate electrodes of a p-channel MISFET and an n-channel MISFET of CMOS transistors are made of an identical conductor film, and the conductor film of the gate electrode of the p-channel MISFET is of p-type, while that of the gate electrode of the n-channel MISFET is of n-type.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: April 30, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Ikeda, Kouichirou Yamada, Osamu Saito, Masanori Odaka, Nobuo Tamba, Katsumi Ogiue, Atsushi Hiraishi, Atsuo Watanabe, Mitsuru Hirao, Akira Fukami, Masayuki Ohayashi, Tadashi Kuramoto
  • Patent number: 5508549
    Abstract: An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
    Type: Grant
    Filed: July 25, 1991
    Date of Patent: April 16, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahide Ikeda, Kiyoshi Tsukuda, Mitsuru Hirao, Touji Mukai, Tatsuya Kamei
  • Patent number: 5497023
    Abstract: Disclosed is a semiconductor device, such as a semiconductor memory device, having structure wherein invasion of minority carriers from the semiconductor substrate into components of the device, formed on the substrate, can be avoided. The semiconductor memory device can be an SRAM or DRAM, for example, and includes a memory array and peripheral circuit on a substrate. In one aspect of the present invention, a buried layer of the same conductivity type as that of the substrate, but with a higher impurity concentration than that of the substrate, is provided beneath at least one of the peripheral circuit and memory array. A further region can extend from the buried layer, for example, to the surface of the semiconductor substrate, the buried layer and further region in combination acting as a shield to prevent minority carriers from penetrating to the device elements.
    Type: Grant
    Filed: December 8, 1994
    Date of Patent: March 5, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Shinji Nakazato, Hideaki Uchida, Yoshikasu Saito, Masahiro Yamamura, Yutaka Kobayashi, Takahide Ikeda, Ryoichi Hori, Goro Kitsukawa, Kiyoo Itoh, Nobuo Tanba, Takao Watanabe, Katsuhiro Shimohigashi, Noriyuki Homma
  • Patent number: 5386135
    Abstract: Disclosed is a semiconductor device, such as a semiconductor memory device, having structure wherein invasion of minority carriers from the semiconductor substrate into components of the device, formed on the substrate, can be avoided. The semiconductor memory device can be an SRAM or DRAM, for example, and includes a memory array and peripheral circuit on a substrate. In one aspect of the present invention, a buried layer of the same conductivity type as that of the substrate, but with a higher impurity concentration than that of the substrate, is provided beneath at least one of the peripheral circuit and memory array. A further region can extend from the buried layer, for example, to the surface of the semiconductor substrate, the buried layer and further region in combination acting as a shield to prevent minority carriers from penetrating to the device elements.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: January 31, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Shinji Nakazato, Hideaki Uchida, Yoshikazu Saito, Masahiro Yamamura, Yutaka Kobayashi, Takahide Ikeda, Ryoichi Hori, Goro Kitsukawa, Kiyoo Itoh, Nobuo Tanba, Takao Watanabe, Katsuhiro Shimohigashi, Noriyuki Homma
  • Patent number: 5354699
    Abstract: Disclosed is a bipolar-CMOS LSI manufactured by a simplified process and realizing a higher density of integration as well as a higher operating speed, in which a base lead-out electrode of a bipolar transistor and respective gate electrodes of a p-channel MISFET and an n-channel MISFET of CMOS transistors are made of an identical conductor film, and the conductor film of the gate electrode of the p-channel MISFET is of p-type, while that of the gate electrode of the n-channel MISFET is of n-type.
    Type: Grant
    Filed: October 22, 1992
    Date of Patent: October 11, 1994
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Ikeda, Kouichirou Yamada, Osamu Saito, Masanori Odaka, Nobuo Tamba, Katsumi Ogiue, Atsushi Hiraishi, Atsuo Watanabe, Mitsuru Hirao, Akira Fukami, Masayuki Ohayashi, Tadashi Kuramoto
  • Patent number: 5324982
    Abstract: Disclosed is a semiconductor device, such as a semiconductor memory device, having structure wherein invasion of minority carriers from the semiconductor substrate into components of the device, formed on the substrate, can be avoided. The semiconductor memory device can be an SRAM or DRAM, for example, and includes a memory array and peripheral circuit on a substrate. In one aspect of the present invention, a buried layer of the same conductivity type as that of the substrate, but with a higher impurity concentration than that of the substrate, is provided beneath at least one of the peripheral circuit and memory array. A further region can extend from the buried layer, for example, to the surface of the semiconductor substrate, the buried layer and further region in combination acting as a shield to prevent minority carriers from penetrating to the device elements.
    Type: Grant
    Filed: October 2, 1991
    Date of Patent: June 28, 1994
    Assignee: Hitachi, Ltd.
    Inventors: Shinji Nakazato, Hideaki Uchida, Yoshikazu Saito, Masahiro Yamamura, Yutaka Kobayashi, Takahide Ikeda, Ryoichi Hori, Goro Kitsukawa, Kiyoo Itoh, Nobuo Tanba, Takao Watanabe, Katsuhiro Shimohigashi, Noriyuki Homma
  • Patent number: 5321650
    Abstract: P-channel MOSFETs in a fully CMOS-type memory cell are formed by a thin film (polysilicon), and portions that serve as source and drain regions of the thin-film p-channel MOSFETs are thickened by a conductor layer having a small resistance value. Further, the thin film and the conductor layer having a small resistance value are formed in common with a base lead-out layer of an npn bipolar transistor constituting a peripheral circuit.
    Type: Grant
    Filed: June 9, 1992
    Date of Patent: June 14, 1994
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Kikuchi, Takahide Ikeda
  • Patent number: 5148255
    Abstract: Disclosed is a semiconductor device, such as a semiconductor memory device, having structure wherein invasion of minority carriers from the semiconductor substrate into components of the device, formed on the substrate, can be avoided. The semiconductor memory device can be an SRAM or DRAM, for example, and includes a memory array and peripheral circuit on a substrate. In one aspect of the present invention, a buried layer of the same conductivity type as that of the substrate, but with a higher impurity concentration than that of the substrate, is provided beneath at least one of the peripheral circuit and memory array. A further region can extend from the buried layer, for example, to the surface of the semiconductor substrate, the buried layer and further region in combination acting as a shield to prevent minority carriers from penetrating to the device elements.
    Type: Grant
    Filed: January 23, 1991
    Date of Patent: September 15, 1992
    Assignee: Hitachi, Ltd.
    Inventors: Shinji Nakazato, Hideaki Uchida, Yoshikazu Saito, Masahiro Yamamura, Yutaka Kobayashi, Takahide Ikeda, Ryoichi Hori, Goro Kitsukawa, Kiyoo Itoh, Nobuo Tanba, Takao Watanabe, Katsuhiro Shimohigashi, Noriyuki Homma
  • Patent number: 5057894
    Abstract: Disclosed is a bipolar-CMOS LSI manufactured by a simplified process and realizing a higher density of integration as well as a higher operating speed, in which a base lead-out electrode of a bipolar transistor and respective gate electrodes of a p-channel MISFET and an n-channel MISFET of CMOS transistors are made of an identical conductor film, and the conductor film of the gate electrode of the p-channel MISFET is of p-type, while that of the gate electrode of the n-channel MISFET is of n-type.
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: October 15, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Ikeda, Kouichirou Yamada, Osamu Saito, Masanori Odaka, Nobuo Tamba, Katsumi Ogiue, Atsushi Hiraishi, Atsuo Watanabe, Mitsuru Hirao, Akira Fukami, Masayuki Ohayashi, Tadashi Kuramoto
  • Patent number: 5049967
    Abstract: An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from a surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: September 17, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahide Ikeda, Kiyoshi Tsukuda, Mitsuru Hirao, Touji Mukai, Tatsuya Kamei
  • Patent number: 5026654
    Abstract: Disclosed is here a semicondutor integrated circuit device and a method of manufacturing the same in which bipolar transistors and MISFETs are formed on a semiconductor substrate. Emitter and base electrodes of the bipolar transistors and gate, source, and drain electrodes of the MISFETs are constituted with the same polycrystalline layer, thereby realizing a high integration and a high-speed operation of a Bi-CMOS device.
    Type: Grant
    Filed: February 24, 1988
    Date of Patent: June 25, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Tanba, Takahide Ikeda
  • Patent number: 4984200
    Abstract: Herein disclosed is a semiconductor integrated circuit device comprising a SRAM which is composed of a memory cell having its high resistance load element and power source voltage line connected with the information storage node of a flip-flop circuit through a conductive layer. At the same fabrication step as that of forming the plate electrode layer of a capacity element over the conductive layer formed on the portion of the information storage node through a dielectric film, an electric field shielding film for shielding the field effect of a data line is formed over the high resistance load element through an inter-layer insulation film.
    Type: Grant
    Filed: November 15, 1988
    Date of Patent: January 8, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Ryuichi Saitoo, Osamu Saitoo, Takahide Ikeda, Mitsuru Hirao, Atsushi Hiraishi
  • Patent number: 4980744
    Abstract: An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
    Type: Grant
    Filed: February 24, 1988
    Date of Patent: December 25, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahide Ikeda, Kiyoshi Tsukuda, Mitsuru Hirao, Touji Mukai, Tatsuya Kamei
  • Patent number: 4963973
    Abstract: A semiconductor device has a well region formed in the surface of a substrate, and has semiconductor elements such as MOSFETs and bipolar transistors formed in the well region. The carrier concentration profile of the well region assumes the shape of a valley in the direction of depth thereof, and a minimum point thereof has a concentration of smaller than 5.times.10.sup.15 cm.sup.-3 and is located at a position within 1.6 .mu.m from the surface of the substrate. Preferably, the minimum point should have a concentration of greater than 5.times.10.sup.14 cm.sup.-3 but smaller than 5.times.10.sup.15 cm.sup.-3, and more preferably a concentration of greater than 1.times.10.sup.15 cm.sup.-3 but smaller than 5.times.10.sup.15 cm.sup.-3.
    Type: Grant
    Filed: March 13, 1989
    Date of Patent: October 16, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Yoshiaki Yazawa, Atsushi Hiraishi, Masataka Minami, Takahiro Nagano, Takahide Ikeda, Naohiro Momma
  • Patent number: 4921811
    Abstract: An improved arrangement is provided for forming a bipolar transistor on a substrate with CMOS elements. All of the transistors (i.e., the bipolar, P-MOS and N-MOS) are formed in regions having gradually decreasing impurity concentrations from the surface toward the substrate. In addition, a buried layer is provided under each of the regions of decreasing impurity concentration in which the transistors are formed. These buried layers have a significantly higher impurity concentration than the portion of the region of decreasing impurity concentration which they are respectively adjacent to. Using this arrangement, punch-through is prevented and excellent electrical operating characteristics are provided for both the bipolar transistors and the CMOS elements.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: May 1, 1990
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahide Ikeda, Kiyoshi Tsukuda, Mitsuru Hirao, Touji Mukai, Tatsuya Kamei
  • Patent number: 4862240
    Abstract: A monolithic complementary semiconductor device comprising n-type and p-type well regions separated by a dielectric isolation region extending from the surface into the substrate region. The well region includes a highly doped buried region which is located at the bottom of the well region and separates an active region in the well from the substrate region. The isolation region is deeper than the buried region. The well-to-well isolation is enhanced by the combination of the buried region and the deep dielectric isolation region. Packing density and the high speed operation can also be improved.
    Type: Grant
    Filed: August 12, 1987
    Date of Patent: August 29, 1989
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahiro Nagano, Takahide Ikeda, Naohiro Momma, Ryuichi Saito
  • Patent number: RE34158
    Abstract: A monolithic complementary semiconductor device comprising n-type and p-type well regions separated by a dielectric isolation region extending from the surface into the substrate region. The well region includes a highly doped buried region which is located at the bottom of the well region and separates an active region in the wall from the substrate region. The isolation region is deeper than the buried region. The well-to-well isolation is enhanced by the combination of the buried region and the deep dielectric isolation region. Packing density and the high speed operation can also be improved.
    Type: Grant
    Filed: August 13, 1991
    Date of Patent: January 12, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Takahiro Nagano, Takahide Ikeda, Naohiro Momma, Ryuichi Saito