Patents by Inventor Takahiro Nagata

Takahiro Nagata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8940452
    Abstract: A method for producing an electrode catalyst substrate is provided herein, which comprises a carbon film forming step of forming a porous carbon film on a base, a hydrophilization step of hydrophilizing the porous carbon film, an immersion step of immersing the base in a solution prepared by dissolving catalytic metal ions in a polar solvent, and a reduction step of adding a reducing agent to the solution and thus reducing the catalytic metal ions. An electrode catalyst substrate obtained by the method and a polymer electrolyte fuel cell in which the electrode catalyst obtained by the method is used for anodes and/or cathodes are also provided herein. In the electrode catalyst of the present invention, fine catalyst particles are loaded in a uniform and highly dispersed manner.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: January 27, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Kazuma Shinozaki, Atsuhito Okamoto, Tatsuya Hatanaka, Hiroaki Takahashi, Tomoaki Terada, Takahiro Nagata
  • Publication number: 20140002816
    Abstract: A substrate for surface enhanced Raman spectroscopy analysis (SERS) comprises a ferroelectric single crystal having polarization-inverted patterns of spontaneous polarizations including polarization-inverted portions and non-inverted polarization portions, and metallic dots positioned at only either one polarized surfaces of the polarization-inverted portions and the non-inverted polarization portions. The provided SERS substrate produces a high enhancement effect. A microfluidic device incorporating the SERS substrate is also provided.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 2, 2014
    Applicants: National Institute for Materials Science, University of Washington through its Center for Commercialization
    Inventors: Xiaoyan Liu, Kenji Kitamura, Minoru Osada, Takahiro Nagata, Guozhong Cao
  • Publication number: 20130216940
    Abstract: An object of the present invention is to provide a supported catalyst for a fuel cell having a high activity, a method of manufacturing thereof, and a fuel cell including the supported catalyst for a fuel cell. A supported catalyst for a fuel cell of the present invention includes a conductive carrier and catalyst particle supported on the conductive carrier and contains platinum. The ratio of the mass of oxygen to the mass of the catalyst particle measured by using an inert gas fusion-nondispersive infrared absorption method is 4 mass % or less.
    Type: Application
    Filed: March 22, 2013
    Publication date: August 22, 2013
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Yousuke HORIUCHI, Tomoaki TERADA, Takahiro NAGATA, Akihiro HORI, Tetsuo NAGAMI, Takaaki KANAZAWA, Mikihiro KATAOKA
  • Patent number: 8372562
    Abstract: A conductive carbon carrier for a fuel cell having at least a surface layer graphitized, characterized in that the dimension (La) in a six-membered ring face (carbon plane) direction of a crystallite measured by X-ray diffraction is 4.5 nm or more. This carbon carrier improves the durability in a fuel cell and enables operation for a long period of time.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 12, 2013
    Assignees: Cataler Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto, Yosuke Horiuchi, Hiroaki Takahashi, Tetsuo Kawamura, Hideyasu Kawai
  • Patent number: 8338051
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 25, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Patent number: 8299129
    Abstract: The present invention provides a carrier capable of highly efficiently introducing a compound into cells with low cytotoxicity, which contains peptide lipids represented by the following formula, and a method for introducing a compound into cells using the carrier: wherein R1 is an amino acid or peptide having 1-10 amino acid residues, R2 is a side chain of any amino acid, provided that R2 has a carboxyl group, the carboxyl group may be an ester with a hydrocarbon group having 1-30 carbon atoms, R3 is a hydrocarbon group having 1-30 carbon atoms.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 30, 2012
    Assignees: Fukuoka Prefectural Government, Kyoto University, Dojindo Laboratories
    Inventors: Kenichi Kusumoto, Itaru Hamachi, Kazumi Sasamoto, Tetsuyuki Akao, Munetaka Ishiyama, Takahiro Nagata, Chizu Ikeda, Takeshi Ido, Satoko Yamashita, Rieko Kuroda, Tomoyuki Ishikawa
  • Patent number: 8182722
    Abstract: A method for manufacturing a zinc oxide based sputtering target includes the step of producing a zinc oxide based sputtering target by using ?-Al2O3 as a dopant material.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 22, 2012
    Assignee: Sony Corporation
    Inventors: Shina Kirita, Toshitaka Kawashima, Takahiro Nagata, Yuichi Kamori
  • Patent number: 8178260
    Abstract: An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30mL/g·Pt.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: May 15, 2012
    Assignees: Cataler Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Yosuke Horiuchi, Tomoaki Terada, Takahiro Nagata, Toshiharu Tabata, Susumu Enomoto, Hiroaki Takahashi
  • Publication number: 20120107724
    Abstract: An electrode catalyst for a fuel cell consists principally of a carbon support, and a platinum catalyst or a platinum-alloy catalyst supported on the carbon support. In the electrode catalyst, at least 0.7 mmol of an acid per gram of the electrode catalyst is present on the carbon support.
    Type: Application
    Filed: May 4, 2010
    Publication date: May 3, 2012
    Inventors: Tetsuo Nagami, Sozaburo Ohashi, Mikihiro Kataoka, Tomoaki Terada, Takahiro Nagata, Yosuke Horiuchi, Akihiro Hori
  • Publication number: 20120040270
    Abstract: An object of the present invention is to reduce the amount of catalytic metal such as Pt in a fuel cell. The present invention provides a fuel cell electrode catalyst comprising a conductive carrier and catalytic metal particles, wherein the CO adsorption amount of the electrode catalyst is at least 30 mL/g·Pt.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Inventors: Yosuke HORIUCHI, Tomoaki TERADA, Takahiro NAGATA, Toshiharu TABATA, Susumu ENOMOTO, Hiroaki TAKAHASHI
  • Publication number: 20110221464
    Abstract: A contact probe has a tubular plunger which is not made by press working and rounding so that quality control of gold plating or the like is not necessary or not difficult. The tubular plunger is made of a metal tube with a tip that has a reduced outside diameter and notches spaced from the tip. The tip is bent inside the tube and an outer surface of the metal tube, from a bent part to a bottom side, with a small diameter defining a convex part having a larger diameter. The small diameter part of the metal tube is cut off at the end of the small diameter.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 15, 2011
    Applicant: ADVANTEST CORPORATION
    Inventors: Takahiro Nagata, Takayoshi Okuno, Shin Sakiyama, Masanori Nagashima
  • Publication number: 20110200917
    Abstract: An electrode catalyst for a fuel cell, which is capable of maintaining power generation capacity for long periods and has good durability, is provided. The electrode catalyst for a fuel cell is produced by causing a high crystalline carbon carrier with a carbon crystallization degree ranging from 57% to 90% to support a catalytic metal.
    Type: Application
    Filed: October 19, 2009
    Publication date: August 18, 2011
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Tomoaki Terada, Takahiro Nagata, Toshiharu Tabata, Mikihiro Kataoka
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20100330451
    Abstract: A method for producing an electrode catalyst substrate is provided herein, which comprises a carbon film forming step of forming a porous carbon film on a base, a hydrophilization step of hydrophilizing the porous carbon film, an immersion step of immersing the base in a solution prepared by dissolving catalytic metal ions in a polar solvent, and a reduction step of adding a reducing agent to the solution and thus reducing the catalytic metal ions. An electrode catalyst substrate obtained by the method and a polymer electrolyte fuel cell in which the electrode catalyst obtained by the method is used for anodes and/or cathodes are also provided herein. In the electrode catalyst of the present invention, fine catalyst particles are loaded in a uniform and highly dispersed manner.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 30, 2010
    Inventors: Kazuma Shinozaki, Atsuhito Okamoto, Tatsuya Hatanaka, Hiroaki Takahashi, Tomoaki Terada, Takahiro Nagata
  • Publication number: 20100234210
    Abstract: An object of the present invention is to provide a fuel cell electrode catalyst which offers an improved durability while inhibiting the degradation of an initial catalytic activity to exhibit a stably high catalytic activity over a long period. The present invention provides a fuel cell electrode catalyst having an alloy carried by carbon, the alloy consisting of platinum and a platinum-family metal other tha platinum, characterized in that a composition ratio of platinum to platinum-family metal other than platinum to carbon is 1:(0.03 to 1.5):(0.46 to 2.2) (wt ratio).
    Type: Application
    Filed: March 27, 2007
    Publication date: September 16, 2010
    Inventors: Tetsuo Kawamura, Hiroaki Takahashi, Susumu Enomoto, Tomoaki Terada, Takahiro Nagata
  • Publication number: 20100203428
    Abstract: A supported catalyst for fuel cell includes a conductive carrier and platinum supported on the conductive carrier. A 90% particle diameter D90 on a cumulative particle size curve obtained by determining a particle size distribution of the supported catalyst by a light scattering method is 28 ?m or less.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 12, 2010
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiharu TABATA, Tomoaki Terada, Takahiro Nagata, Mikihiro Kataoka, Hiroaki Takahashi, Nobuaki Mizutani, Yousuke Horiuchi
  • Patent number: 7772864
    Abstract: A contact probe includes a plurality of probes, each of the probes including: an conductive tube; an conductive plunger, contained in at least one end side of the tube, and having a distal end part protruding outward from the tube in an axial direction of the tube; and a coil spring, contained in the tube, and adapted to elastically urge the plunger outward. The plural probes are arranged in a first direction in a socket comprised of insulating material. A cross section of the tube in a direction perpendicular to the axial direction of the tube has a greater size in a direction different from the first direction than a size in the first direction.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: August 10, 2010
    Assignee: Yokowo Co., Ltd.
    Inventor: Takahiro Nagata
  • Publication number: 20100196802
    Abstract: A fuel cell having an excellent life property is achieved. A supported catalyst for a fuel cell includes a catalytic particle made of an alloy of platinum and gold, and a conductive carrier supporting the catalytic particle. 50% or more of gold forms a solid solution with platinum.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiharu TABATA, Tomoaki Terada, Takahiro Nagata, Mikihiro Kataoka, Hiroaki Takahashi, Nobuaki Mizutani, Yousuke Horiuchi
  • Publication number: 20100183942
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Application
    Filed: June 11, 2008
    Publication date: July 22, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Publication number: 20100123103
    Abstract: A method for manufacturing a zinc oxide based sputtering target includes the step of producing a zinc oxide based sputtering target by using ?-Al2O3 as a dopant material.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 20, 2010
    Applicant: SONY CORPORATION
    Inventors: Shina Kirita, Toshitaka Kawashima, Takahiro Nagata, Yuichi Kamori