Patents by Inventor Takamitsu Nagai

Takamitsu Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7302091
    Abstract: A method of determining defect detection sensitivity data, comprises: taking image data from the desired surface areas of each of semiconductor devices, processing at least two of the image data through arithmetic operations and comparing the processed image data with a parameter of defect detection sensitivity substituted by predetermined threshold data to obtain information on defects in the desired areas at least in one-to-one correspondence with any of the image data arithmetically processed, repeating more than once the step of varying the parameter of the defect detection sensitivity to obtain the defect information, so as to obtain more than one sets of combination data on a value of the parameter of the defect detection sensitivity correlated with the defect information, processing more than one sets of the combination data to produce a mathematical function expressing a relation of the desired statistical data with the parameter of the defect detection sensitivity, the mathematical function being use
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: November 27, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Hamaguchi, Takamitsu Nagai
  • Publication number: 20070235644
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Application
    Filed: June 1, 2007
    Publication date: October 11, 2007
    Applicants: EBARA CORPORATION, KABUSHIKI KAISHA TOSHIBA
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hiroshi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Publication number: 20070187600
    Abstract: A substrate inspection apparatus includes: an electron beam irradiation device which emits an electron beam and causes the electron beam to irradiate a substrate to be inspected as a primary beam; an electron beam detector which detects at least one of a secondary electron, a reflected electron and a backscattered electron that are generated from the substrate that has been irradiated by the electron beam, and which outputs a signal that forms a one-dimensional or two-dimensional image of a surface of the substrate; a mapping projection optical system which causes imaging of at least one of the secondary electron, the reflected electron and the backscattered electron on the electron beam detector as a secondary beam; and an electromagnetic wave irradiation device which generates an electromagnetic wave and causes the electromagnetic wave to irradiate a location on the surface of the substrate at which the secondary beam is generated.
    Type: Application
    Filed: March 21, 2007
    Publication date: August 16, 2007
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Patent number: 7241993
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: July 10, 2007
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 7211796
    Abstract: A substrate inspection apparatus includes: an electron beam irradiation device which emits an electron beam and causes the electron beam to irradiate a substrate to be inspected as a primary beam; an electron beam detector which detects at least one of a secondary electron, a reflected electron and a backscattered electron that are generated from the substrate that has been irradiated by the electron beam, and which outputs a signal that forms a one-dimensional or two-dimensional image of a surface of the substrate; a mapping projection optical system which causes imaging of at least one of the secondary electron, the reflected electron and the backscattered electron on the electron beam detector as a secondary beam; and an electromagnetic wave irradiation device which generates an electromagnetic wave and causes the electromagnetic wave to irradiate a location on the surface of the substrate at which the secondary beam is generated.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: May 1, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Publication number: 20060118719
    Abstract: An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
    Type: Application
    Filed: December 1, 2005
    Publication date: June 8, 2006
    Inventors: Kenji Watanabe, Hirosi Sobukawa, Nobuharu Noji, Tohru Satake, Shoji Yoshikawa, Tsutomu Karimata, Mamoru Nakasuji, Masahiro Hatakeyama, Takeshi Murakami, Yuichiro Yamazaki, Ichirota Nagahama, Takamitsu Nagai, Kazuyoshi Sugihara
  • Patent number: 6992290
    Abstract: An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: January 31, 2006
    Assignees: Ebara Corporation, Kabushiki Kaisha Toshiba
    Inventors: Kenji Watanabe, Hirosi Sobukawa, Nobuharu Noji, Tohru Satake, Shoji Yoshikawa, Tsutomu Karimata, Mamoru Nakasuji, Masahiro Hatakeyama, Takeshi Murakami, Yuichiro Yamazaki, Ichirota Nagahama, Takamitsu Nagai, Kazuyoshi Sugihara
  • Publication number: 20050029451
    Abstract: A substrate inspection apparatus includes: an electron beam irradiation device which emits an electron beam and causes the electron beam to irradiate a substrate to be inspected as a primary beam; an electron beam detector which detects at least one of a secondary electron, a reflected electron and a backscattered electron that are generated from the substrate that has been irradiated by the electron beam, and which outputs a signal that forms a one-dimensional or two-dimensional image of a surface of the substrate; a mapping projection optical system which causes imaging of at least one of the secondary electron, the reflected electron and the backscattered electron on the electron beam detector as a secondary beam; and an electromagnetic wave irradiation device which generates an electromagnetic wave and causes the electromagnetic wave to irradiate a location on the surface of the substrate at which the secondary beam is generated.
    Type: Application
    Filed: May 26, 2004
    Publication date: February 10, 2005
    Inventors: Ichirota Nagahama, Yuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Publication number: 20040151362
    Abstract: A method of determining defect detection sensitivity data, comprises: taking image data from the desired surface areas of each of semiconductor devices, processing at least two of the image data through arithmetic operations and comparing the processed image data with a parameter of defect detection sensitivity substituted by predetermined threshold data to obtain information on defects in the desired areas at least in one-to-one correspondence with any of the image data arithmetically processed, repeating more than once the step of varying the parameter of the defect detection sensitivity to obtain the defect information, so as to obtain more than one sets of combination data on a value of the parameter of the defect detection sensitivity correlated with the defect information, processing more than one sets of the combination data to produce a mathematical function expressing a relation of the desired statistical data with the parameter of the defect detection sensitivity, the mathematical function being use
    Type: Application
    Filed: October 20, 2003
    Publication date: August 5, 2004
    Inventors: Akira Hamaguchi, Takamitsu Nagai
  • Patent number: 6563114
    Abstract: A host computer controlling a secondary optical system under such an image focusing condition that secondary beams obtained from an arbitrary region on a substrate form an image on a MCP detector, in accordance with a correlation between a state of the substrate and an energy of the secondary electrons and the reflected electrons upon the secondary optical system, in which the energy of the secondary electron beams is various depending on the state of the substrate. The host computer also measures quantitatively a physical and/or chemical characteristic of the substrate on a basis of the image focusing condition and the image signals.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: May 13, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichirota Nagahama, Yuuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Publication number: 20020088940
    Abstract: An electron beam inspection system of the image projection type includes a primary electron optical system for shaping an electron beam emitted from an electron gun into a rectangular configuration and applying the shaped electron beam to a sample surface to be inspected. A secondary electron optical system converges secondary electrons emitted from the sample. A detector converts the converged secondary electrons into an optical image through a fluorescent screen and focuses the image to a line sensor. A controller controls the charge transfer time of the line sensor at which the picked-up line image is transferred between each pair of adjacent pixel rows provided in the line sensor in association with the moving speed of a stage for moving the sample.
    Type: Application
    Filed: November 2, 2001
    Publication date: July 11, 2002
    Inventors: Kenji Watanabe, Hirosi Sobukawa, Nobuharu Noji, Tohru Satake, Shoji Yoshikawa, Tsutomu Karimata, Mamoru Nakasuji, Masahiro Hatakeyama, Takeshi Murakami, Yuichiro Yamazaki, Ichirota Nagahama, Takamitsu Nagai, Kazuyoshi Sugihara
  • Publication number: 20020028399
    Abstract: An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
    Type: Application
    Filed: June 27, 2001
    Publication date: March 7, 2002
    Inventors: Mamoru Nakasuji, Nobuharu Noji, Tohru Satake, Masahiro Hatakeyama, Toshifumi Kimba, Hirosi Sobukawa, Shoji Yoshikawa, Takeshi Murakami, Kenji Watanabe, Tsutomu Karimata, Shin Oowada, Mutsumi Saito, Yuichiro Yamazaki, Takamitsu Nagai, Ichirota Nagahama
  • Patent number: 6265719
    Abstract: An inspection apparatus using an electron beam according to this invention has an electron beam irradiation unit (1-10) for irradiating a sample (11) with an electron beam (31), a projection optical unit (16-21) for forming a one- and/or two-dimensional image or images of secondary and reflected electrons (32) projected in accordance with changes in shape, material, and electrical potential of the sample surface, an electron beam detection unit (22-27) for outputting a detection signal on the basis of the one- and/or two-dimensional image or images, an image display unit (30) for displaying the one- and/or two-dimensional image or images of the sample surface upon receiving the detection signal, and an electron beam deflection unit (27, 43-44) for changing the incident angle of the electron beam coming from the electron beam irradiation unit onto the sample, and guiding the received secondary and reflected electrons to the mapping projection optical unit.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 24, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Yamazaki, Takamitsu Nagai, Motosuke Miyoshi
  • Patent number: 6259094
    Abstract: An apparatus having an electron beam irradiation unit (11) for emitting an electron beam having a rectangular cross section from a linear cathode (12), and irradiating the inspection region (1a) of a sample (16) with the electron beam, a secondary optical system projection optical unit (17) for forming an image (defined by secondary and reflected electrons produced from the inspection region (1a) irradiated with the electron beam) onto an electron beam detection unit in a predetermined scale of enlargement, and an electron beam detection unit (22) for generating and outputting a detection signal in accordance with the formed image. The electron beam irradiation unit (11) forms the electron beam to have substantially the same area as the inspection region (1a) of the sample surface (16), and irradiates the inspection region (1a) with a single irradiation of the formed electron beam. In this way, the problems of conventional scanning electron microscopes, (i.e.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: July 10, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takamitsu Nagai, Yuichiro Yamazaki, Motosuke Miyoshi
  • Patent number: 5535508
    Abstract: An electrostatic lens produces a smooth potential distribution along the center axis and is reduced in lens size and in total shape.A metal layer 13 is deposited at a certain position on an inner surface of insulating cylinder 11, and a high-resistance layer 12 is deposited on a portion except for the metal layer 13 on the inner surface of cylinder 11. A negative potential is applied from an external power source 19 to the metal layer 13, and the high-resistance layer 12 is earthed.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: July 16, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takamitsu Nagai, Yuichiro Yamazaki, Motosuke Miyoshi
  • Patent number: 5444256
    Abstract: An electrostatic lens produces a smooth potential distribution along the center axis and is reduced in lens size and in total shape. A metal layer 13 is deposited at a certain position on an inner surface of insulating cylinder 11, and a high-resistance layer 12 is deposited on a portion except for the metal layer 13 on the inner surface of cylinder 11. A negative potential is applied from an external power source 19 to the metal layer 13, and the high-resistance layer 12 is earthed.
    Type: Grant
    Filed: December 17, 1993
    Date of Patent: August 22, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takamitsu Nagai, Yuichiro Yamazaki, Motosuke Miyoshi
  • Patent number: 5371371
    Abstract: A magnetic immersion field emission electron gun has a vacuum vessel having a central axis in a predetermined direction, a cathode arranged along the central axis of the vacuum vessel for generating an electron beam, an anode for forming an electron beam path by accelerating a generated electron beam in the central axis direction, an electrostatic lens arranged between the cathode and anode for generating an electric field which focuses an accelerated electron beam toward the central axis, a magnetic field generating element arranged around the electron beam path for generating a magnetic field for focusing the electron beam in order to preventing a diameter of the electron beam from expansion by an aberration of the electrostatic lens, and a moving mechanism for moving the magnetic field generating element at a position where a peak point of a strength of the magnetic field generated by the magnetic field generating element coincides with a portion where the aberration of the electrostatic lens becomes most
    Type: Grant
    Filed: August 27, 1993
    Date of Patent: December 6, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Yamazaki, Motosuke Miyoshi, Takamitsu Nagai