Patents by Inventor Takanori Nishi

Takanori Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210399194
    Abstract: A quantum device (100) includes: an interposer (112); a quantum chip (111); and a connection part (130) that is provided between the interposer (112) and the quantum chip (111) and electrically connects a wiring layer of the interposer (112) to a wiring layer of the quantum chip (111), in which the connection part (130) includes: a plurality of pillars (131) arranged on a main surface of the interposer (112); and a metal film (132) provided on a surface of the plurality of pillars (131) in such a way that it contacts the wiring layer of the quantum chip (111) and the thickness of the metal film at outer peripheral parts of the tip of each of the plurality of pillars (131) becomes larger than the thickness of the metal film at a center part of the tip of each of the plurality of pillars (131).
    Type: Application
    Filed: June 16, 2021
    Publication date: December 23, 2021
    Applicant: NEC Corporation
    Inventors: Kenji NANBA, Ayami YAMAGUCHI, Akira MIYATA, Katsumi KIKUCHI, Suguru WATANABE, Takanori NISHI, Hideyuki SATOU
  • Patent number: 11167385
    Abstract: When pressurized fluid is not supplied into or discharged from the first channel 28a of the piston rod 28, that is, when the first channel 28a is isolated from the outside, the cylinder tube 22 is in a stopped state. At this time, fluid inside the first cylinder chamber 36a is compressed, and the pressure is increased accordingly to match the sum of the weights of the cylinder tube 22, the table 18, and the workpiece W.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 9, 2021
    Assignee: SMC CORPORATION
    Inventors: Hiroshi Uota, Takanori Nishi
  • Publication number: 20210273226
    Abstract: In order to provide an organic radical battery having excellent high power, discharge characteristics at a high current, and cycle characteristics, an electrode having a repeating unit having a nitroxide radical site represented by formula (1-a) and a repeating unit having a carboxyl group represented by formula (1-b) in a range in which x satisfies 0.1 to 10 and using a copolymer having a cross-linked structure as an electrode active material is used for the organic radical battery. (wherein in Formulas (1-a) and (1-b), R1 and R2 each independently represent hydrogen or a methyl group; and x represents a mol % of Formula (1-b) in the total 100 mol % of Formulas (1-a) and (1-b).
    Type: Application
    Filed: July 19, 2019
    Publication date: September 2, 2021
    Applicant: NEC Corporation
    Inventors: Shigeyuki IWASA, Takanori NISHI, Momotaro TAKEDA, Hideharu IWASAKI
  • Publication number: 20210138596
    Abstract: When pressurized fluid is not supplied into or discharged from the first channel 28a of the piston rod 28, that is, when the first channel 28a is isolated from the outside, the cylinder tube 22 is in a stopped state. At this time, fluid inside the first cylinder chamber 36a is compressed, and the pressure is increased accordingly to match the sum of the weights of the cylinder tube 22, the table 18, and the workpiece W.
    Type: Application
    Filed: August 1, 2018
    Publication date: May 13, 2021
    Applicant: SMC CORPORATION
    Inventors: Hiroshi UOTA, Takanori NISHI
  • Publication number: 20190386309
    Abstract: In order to provide an organic radical battery excellent in the high output performance and the discharge characteristic at large currents, an electrode using, as an electrode active material, a copolymer having a repeating unit having a nitroxide radical site represented by the formula (1-a) and a repeating unit having carboxy-lithium represented by the formula (1-b) in the range of x satisfying 0.1 to 10 is used for the organic radical battery.
    Type: Application
    Filed: January 19, 2018
    Publication date: December 19, 2019
    Applicants: NEC Corporation, Kuraray Co., Ltd.
    Inventors: Shigeyuki IWASA, Takanori NISHI, Hideharu IWASAKI, Jun-Sang CHO
  • Patent number: 10497978
    Abstract: A secondary battery exhibiting high charge and discharge rate characteristics can be provided, by making the secondary battery have a cathode including a nitroxyl compound taking a nitroxyl cation substructure represented by the following formula (1) in an oxidized state and a nitroxyl radical substructure represented by the following formula (2) in a reduced state, an anode including an active material capable of reversibly intercalating and deintercalating a lithium ion, and an electrolyte solution including a lithium salt and an aprotic organic solvent, and employing Li[(FSO2)2N] as the lithium salt:
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: December 3, 2019
    Assignee: NEC Corporation
    Inventors: Terumasa Shimoyama, Takanori Nishi, Shigeyuki Iwasa, Katsumi Maeda
  • Patent number: 10329144
    Abstract: A substrate treatment method using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer includes a polymer separating step, wherein a ratio of a molecular weight of the hydrophilic polymer in the block copolymer is adjusted to 20% to 40% so that the hydrophilic polymers align at positions corresponding to a hexagonal close-packed structure in a plan view after the polymer separating step, and at the polymer separating step, a columnar first hydrophilic polymer is phase-separated on each of circular patterns of hydrophobic coating films and a columnar second hydrophilic polymer is phase-separated between the first hydrophilic polymers, and a diameter of the circular pattern is set so that the first hydrophilic polymers and the second hydrophilic polymers align at positions corresponding to the hexagonal close-packed structure in a plan view.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: June 25, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Tadatoshi Tomita, Hisashi Genjima, Gen You, Takahiro Kitano, Takanori Nishi
  • Publication number: 20180115018
    Abstract: A secondary battery exhibiting high charge and discharge rate characteristics can be provided, by making the secondary battery have a cathode including a nitroxyl compound taking a nitroxyl cation substructure represented by the following formula (1) in an oxidized state and a nitroxyl radical substructure represented by the following formula (2) in a reduced state, an anode including an active material capable of reversibly intercalating and deintercalating a lithium ion, and an electrolyte solution including a lithium salt and an aprotic organic solvent, and employing Li[(FSO2)2N] as the lithium salt:
    Type: Application
    Filed: February 23, 2016
    Publication date: April 26, 2018
    Applicant: NEC Corporation
    Inventors: Terumasa SHIMOYAMA, Takanori NISHI, Shigeyuki IWASA, Katsumi MAEDA
  • Publication number: 20180065843
    Abstract: A substrate treatment method using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer includes a polymer separating step, wherein a ratio of a molecular weight of the hydrophilic polymer in the block copolymer is adjusted to 20% to 40% so that the hydrophilic polymers align at positions corresponding to a hexagonal close-packed structure in a plan view after the polymer separating step, and at the polymer separating step, a columnar first hydrophilic polymer is phase-separated on each of circular patterns of hydrophobic coating films and a columnar second hydrophilic polymer is phase-separated between the first hydrophilic polymers, and a diameter of the circular pattern is set so that the first hydrophilic polymers and the second hydrophilic polymers align at positions corresponding to the hexagonal close-packed structure in a plan view.
    Type: Application
    Filed: February 10, 2016
    Publication date: March 8, 2018
    Inventors: Makoto MURAMATSU, Tadatoshi TOMITA, Hisashi GENJIMA, Gen YOU, Takahiro KITANO, Takanori NISHI
  • Patent number: 9810987
    Abstract: A substrate treatment method includes: a polymer separation step of phase-separating a block copolymer into a hydrophilic polymer and a hydrophobic polymer; and a polymer removal step of selectively removing the hydrophilic polymer from the phase-separated block copolymer, wherein in the polymer removal step, the hydrophilic polymer is removed by: irradiating the phase-separated block copolymer with an energy ray; then supplying a first polar organic solvent having a first degree of dissolving the hydrophilic polymer, being lower in boiling point than water and capable of dissolving water, and not dissolving the hydrophobic polymer, to the block copolymer; and then supplying a second polar organic solvent having a second dissolving degree lower than the first dissolving degree, being higher in boiling point than water, and not dissolving the hydrophobic polymer, to the block copolymer.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: November 7, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Takahiro Kitano, Tadatoshi Tomita, Takanori Nishi, Shinichiro Kawakami, Takashi Yamauchi
  • Patent number: 9741583
    Abstract: A substrate treatment method includes: forming a plurality of circular patterns of a resist film on a substrate; thereafter applying a first block copolymer; then phase-separating the first block copolymer into a hydrophilic polymer and a hydrophobic polymer; thereafter selectively removing the hydrophilic polymer; then selectively removing the resist film from a top of the substrate; thereafter applying a second block copolymer to the substrate; then phase-separating the second block copolymer into a hydrophilic polymer and a hydrophobic polymer; and thereafter selectively removing the hydrophilic polymer from the phase-separated second block copolymer. A ratio of a molecular weight of the hydrophilic polymer in the first block copolymer and the second block copolymer is 20% to 40%.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 22, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Takahiro Kitano, Tadatoshi Tomita, Gen You, Takanori Nishi
  • Publication number: 20170133235
    Abstract: A substrate treatment method includes: forming a plurality of circular patterns of a resist film on a substrate; thereafter applying a first block copolymer; then phase-separating the first block copolymer into a hydrophilic polymer and a hydrophobic polymer; thereafter selectively removing the hydrophilic polymer; then selectively removing the resist film from a top of the substrate; thereafter applying a second block copolymer to the substrate; then phase-separating the second block copolymer into a hydrophilic polymer and a hydrophobic polymer; and thereafter selectively removing the hydrophilic polymer from the phase-separated second block copolymer. A ratio of a molecular weight of the hydrophilic polymer in the first block copolymer and the second block copolymer is 20% to 40%.
    Type: Application
    Filed: April 16, 2015
    Publication date: May 11, 2017
    Inventors: Makoto MURAMATSU, Takahiro KITANO, Tadatoshi TOMITA, Gen YOU, Takanori NISHI
  • Publication number: 20160124307
    Abstract: A substrate treatment method includes: a polymer separation step of phase-separating a block copolymer into a hydrophilic polymer and a hydrophobic polymer; and a polymer removal step of selectively removing the hydrophilic polymer from the phase-separated block copolymer, wherein in the polymer removal step, the hydrophilic polymer is removed by: irradiating the phase-separated block copolymer with an energy ray; then supplying a first polar organic solvent having a first degree of dissolving the hydrophilic polymer, being lower in boiling point than water and capable of dissolving water, and not dissolving the hydrophobic polymer, to the block copolymer; and then supplying a second polar organic solvent having a second dissolving degree lower than the first dissolving degree, being higher in boiling point than water, and not dissolving the hydrophobic polymer, to the block copolymer.
    Type: Application
    Filed: June 6, 2014
    Publication date: May 5, 2016
    Inventors: Makoto MURAMATSU, Takahiro KITANO, Tadatoshi TOMITA, Takanori NISHI, Shinichiro KAWAKAMI, Takashi YAMAUCHI
  • Patent number: 9287533
    Abstract: A non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator provided between the positive-electrode layer and the negative-electrode layer; and a positive-electrode-side insulating layer and a negative-electrode-side insulating layer respectively formed on another surface of the positive-electrode collector layer and another surface of the negative-electrode collector layer. Circumferential inner surfaces of peripheral edges of the positive-electrode collector layer and the negative-electrode collector layer are joined with a sealing agent including at least a positive-electrode fusion layer, a gas barrier layer, and a negative-electrode fusion layer.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 15, 2016
    Assignee: NEC CORPORATION
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Haruyuki Yoshigahara, Yoichi Shimizu
  • Publication number: 20140087235
    Abstract: A layered structure includes a configuration in which non-aqueous secondary batteries are layered. Each non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator containing an electrolytic solution provided between the positive-electrode layer and the negative-electrode layer; a positive-electrode-side insulating layer formed on another surface of the positive-electrode collector layer; and a negative-electrode-side insulating layer formed on another surface of the negative-electrode collector layer. Two non-aqueous secondary batteries share one negative-electrode-side insulating layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 27, 2014
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Hiroshi Kato, Yoichi Shimizu, Haruyuki Yoshigahara
  • Publication number: 20140079984
    Abstract: A non-aqueous secondary battery includes: a positive-electrode collector layer; a positive-electrode layer formed on one surface of the positive-electrode collector layer; a negative-electrode collector layer; a negative-electrode layer formed on one surface of the negative-electrode collector layer so as to be opposed to the positive-electrode layer; a separator provided between the positive-electrode layer and the negative-electrode layer; and a positive-electrode-side insulating layer and a negative-electrode-side insulating layer respectively formed on another surface of the positive-electrode collector layer and another surface of the negative-electrode collector layer. Circumferential inner surfaces of peripheral edges of the positive-electrode collector layer and the negative-electrode collector layer are joined with a sealing agent including at least a positive-electrode fusion layer, a gas barrier layer, and a negative-electrode fusion layer.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 20, 2014
    Inventors: Hiroshi Kajitani, Kentaro Nakahara, Takanori Nishi, Shigeyuki Iwasa, Haruyuki Yoshigahara, Yoichi Shimizu
  • Patent number: 8522712
    Abstract: In a template treatment of forming a film of a release agent on a treatment surface of a template, the treatment surface of the template is first cleaned. Thereafter, in a coating unit, the release agent is applied to the treatment surface of the template. The release agent on the template is then dried. Then, alcohol is applied to the release agent on the template to make the release agent adhere to the treatment surface of the template and to remove an unreacted portion of the release agent. Thereafter, the alcohol on the template is dried and removed. In this manner, a film of the release agent is formed in a predetermined film thickness on the treatment surface of the template.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: September 3, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Koukichi Hiroshiro, Takanori Nishi, Takahiro Kitano, Shoichi Terada
  • Patent number: 8524418
    Abstract: A polymer electrolyte fuel cell includes a power generation part as an electrolyte membrane-electrode assembly formed of a solid polymer electrolyte membrane, a fuel electrode arranged in contact with one side of the solid polymer electrolyte membrane and an oxygen electrode arranged in contact with the other side of the membrane, and a fuel supply part for storing and supplying an alcohol fuel to the fuel electrode. The fuel supply part is composed of a high-concentration fuel tank for storing and supplying a highly-concentrated fuel and a water fuel tank for storing and supplying a water fuel. The fuel is gasified and supplied to the power generation part through a fuel gasification/supply layer provided between at least the high-concentration fuel tank and the fuel electrode.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: September 3, 2013
    Assignee: NEC Corporation
    Inventors: Kenji Kobayashi, Hidekazu Kimura, Takanori Nishi
  • Publication number: 20130209878
    Abstract: A thin nonaqueous secondary cell has high stability where a positive charge collector and a negative charge collector also serve as outer covering members. A sealing layer concurrently achieves high adhesiveness with both electrode charge collectors, high reliability preventing of short circuits, and satisfactory gas barrier properties. The nonaqueous secondary cell includes a positive charge collector containing aluminum as a primary component, a positive electrode layer formed on the positive charge collector, a negative charge collector containing copper as a primary component, a negative electrode layer formed on the negative charge collector so the negative electrode layer opposes the positive electrode layer, and a separator including an electrolyte between positive and negative electrode layers.
    Type: Application
    Filed: August 12, 2011
    Publication date: August 15, 2013
    Applicant: NEC CORPORATION
    Inventors: Kentaro Nakahara, Osamu Yamashita, Takanori Nishi, Haruyuki Yoshigahara, Yoichi Shimizu
  • Patent number: 8505437
    Abstract: A fluid pressure cylinder including a first damper and a second damper provided respectively on a head cover and a rod cover, which are disposed on both ends of the fluid pressure cylinder so as to face toward a piston. The first damper and the second damper are formed from an elastic material, and are made up from a main body portion against which the piston abuts, and a plurality of legs that project from the main body portion and which are gripped between the head cover and the rod cover and an inner wall surface of the cylinder tube.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 13, 2013
    Assignee: SMC Kabushiki Kaisha
    Inventor: Takanori Nishi