Patents by Inventor Takao Arase

Takao Arase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180040459
    Abstract: Disclosed herein is a plasma processing apparatus including: a processing chamber in which a sample is to be processed using plasma; a radio-frequency power source that supplies radio-frequency power for producing the plasma; and a sample stage on which the sample is to be mounted, the plasma processing apparatus further including a control unit that performs control so that plasma is produced after applying a DC voltage for electrostatically attracting the sample to the sample stage to each of two electrodes placed on the sample stage, and a heat-transfer gas for adjusting a temperature of the sample is supplied to a back surface of the sample after production of the plasma.
    Type: Application
    Filed: February 6, 2017
    Publication date: February 8, 2018
    Inventors: Taku IWASE, Masahito MORI, Takao ARASE, Kenetsu YOKOGAWA
  • Patent number: 9887070
    Abstract: To control temperature of a sample in plasma processing with high accuracy while securing an electrostatic chucking force 5 without breakdown of an electrostatic chucking film. When radio-frequency power is time modulated, a high-voltage side Vpp detector detects a first voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to a sample stage in a first period of the time modulation having a 10 first amplitude. A low-voltage side Vpp detector detects a second voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to the sample stage in a second period having a second amplitude smaller than the first amplitude. Then, an ESC power supply control unit controls output voltages from 15 ESC power supplies based on the first voltage value, the second voltage value and a duty ratio of the time modulation.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: February 6, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takao Arase, Masahito Mori, Kenetsu Yokogawa, Yuusuke Takegawa, Takamasa Ichino
  • Publication number: 20170338086
    Abstract: To control temperature of a sample in plasma processing with high accuracy while securing an electrostatic chucking force without breakdown of an electrostatic chucking film. When radio-frequency power is time modulated, a high-voltage side Vpp detector detects a first voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to a sample stage in a first period of the time modulation having a first amplitude. A low-voltage side Vpp detector detects a second voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to the sample stage in a second period having a second amplitude smaller than the first amplitude. Then, an ESC power supply control unit controls output voltages from ESC power supplies based on the first voltage value, the second voltage value and a duty ratio of the time modulation.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takao Arase, Masahito Mori, Kenetsu Yokogawa, Yuusuke Takegawa, Takamasa Ichino
  • Patent number: 9779919
    Abstract: To control temperature of a sample in plasma processing with high accuracy while securing an electrostatic chucking force without breakdown of an electrostatic chucking film. When radio-frequency power is time modulated, a high-voltage side Vpp detector detects a first voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to a sample stage in a first period of the time modulation having a first amplitude. A low-voltage side Vpp detector detects a second voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to the sample stage in a second period having a second amplitude smaller than the first amplitude. Then, an ESC power supply control unit controls output voltages from ESC power supplies based on the first voltage value, the second voltage value and a duty ratio of the time modulation.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 3, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takao Arase, Masahito Mori, Kenetsu Yokogawa, Yuusuke Takegawa, Takamasa Ichino
  • Publication number: 20160203958
    Abstract: To control temperature of a sample in plasma processing with high accuracy while securing an electrostatic chucking force without breakdown of an electrostatic chucking film. When radio-frequency power is time modulated, a high-voltage side Vpp detector detects a first voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to a sample stage in a first period of the time modulation having a first amplitude. A low-voltage side Vpp detector detects a second voltage value which is a peak-to-peak voltage value of a radio-frequency voltage applied to the sample stage in a second period having a second amplitude smaller than the first amplitude. Then, an ESC power supply control unit controls output voltages from ESC power supplies based on the first voltage value, the second voltage value and a duty ratio of the time modulation.
    Type: Application
    Filed: December 17, 2015
    Publication date: July 14, 2016
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takao Arase, Masahito Mori, Kenetsu Yokogawa, Yuusuke Takegawa, Takamasa Ichino
  • Patent number: 9230782
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: January 5, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Eiji Ikegami, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Publication number: 20150357210
    Abstract: There is provided a method for controlling a plasma processing apparatus that eliminates a preliminary study on a resonance point while maintaining a low contamination and a high uniformity even in multi-step etching. In a method for controlling a plasma processing apparatus including the step of adjusting a radio frequency bias current carried to a counter antenna electrode, the method includes the steps of: setting a reactance of a variable element to an initial value; detecting a bias current carried to the counter antenna electrode; searching for a maximum value of the detected electric current; and adjusting a value of the reactance of the variable element from the maximum value to the set value and then fixing the value.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 10, 2015
    Inventors: Masahito MORI, Akira HIRATA, Koichi YAMAMOTO, Takao ARASE
  • Patent number: 9136095
    Abstract: There is provided a method for controlling a plasma processing apparatus that eliminates a preliminary study on a resonance point while maintaining a low contamination and a high uniformity even in multi-step etching. In a method for controlling a plasma processing apparatus including the step of adjusting a radio frequency bias current carried to a counter antenna electrode, the method includes the steps of: setting a reactance of a variable element to an initial value; detecting a bias current carried to the counter antenna electrode; searching for a maximum value of the detected electric current; and adjusting a value of the reactance of the variable element from the maximum value to the set value and then fixing the value.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: September 15, 2015
    Assignee: Hitachi High-Technologies Coporation
    Inventors: Masahito Mori, Akira Hirata, Koichi Yamamoto, Takao Arase
  • Publication number: 20150221518
    Abstract: In the present invention, a dry etching method for plasma etching a second laminated film in which a first laminated film in which a silicon-containing film and a silicon dioxide film are laminated is laminated in plurality and an inorganic film arranged over the second laminated film, includes etching the inorganic film and the second laminated film by a mixed gas of an NF3 gas and a CH3F gas.
    Type: Application
    Filed: July 31, 2014
    Publication date: August 6, 2015
    Inventors: Satoshi Terakura, Masahito Mori, Takao Arase, Ryuta Machida
  • Publication number: 20150020970
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Inventors: Eiji IKEGAMI, Shoji IKUHARA, Takeshi SHIMADA, Kenichi KUWABARA, Takao ARASE, Tsuyoshi MATSUMOTO
  • Patent number: 8900401
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 2, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Eiji Ikegami, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Publication number: 20140225503
    Abstract: There is provided a method for controlling a plasma processing apparatus that eliminates a preliminary study on a resonance point while maintaining a low contamination and a high uniformity even in multi-step etching. In a method for controlling a plasma processing apparatus including the step of adjusting a radio frequency bias current carried to a counter antenna electrode, the method includes the steps of: setting a reactance of a variable element to an initial value; detecting a bias current carried to the counter antenna electrode; searching for a maximum value of the detected electric current; and adjusting a value of the reactance of the variable element from the maximum value to the set value and then fixing the value.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Masahito Mori, Akira Hirata, Koichi Yamamoto, Takao Arase
  • Publication number: 20140102640
    Abstract: A plasma processing apparatus having a stable plasma generation under wide-ranging process conditions, and superior in uniformity and reproducibility, comprises an upper electrode 3 having gas supply through holes 6, a gas supply means and a lower electrode 1, wherein the gas supply means includes a plane-like member 4 having gas through holes 8 and a plane-like member 5 having gas through holes 10, and the gas supply through holes 6 and the gas through holes 8 are connected through a groove 7, and the gas through holes 8 and the gas through holes 10 are connected through a groove 9, and wherein the gas supply through holes 6, the gas through holes 8 and the gas through holes 10 are disposed at positions, different from each other on a plane.
    Type: Application
    Filed: July 30, 2013
    Publication date: April 17, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Ken'etsu YOKOGAWA, Masahito MORI, Takao ARASE
  • Patent number: 8038896
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 18, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Eiji Ikegami, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Publication number: 20100288195
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 18, 2010
    Inventors: Eiji IKEGAMI, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Patent number: 7364956
    Abstract: A method for manufacturing semiconductor devices includes a step of etching a sample including an interlayer insulating layer containing Al2O3 and a polysilicon or SiO2 layer in contact with the interlayer insulating layer using a plasma etching system. The interlayer insulating layer is etched with a gas mixture containing BCl3, Ar, and CH4 or He. The gas mixture further contains Cl2. The interlayer insulating layer is etched in such a manner that a time-modulated high-frequency bias voltage is applied to the sample. The interlayer insulating layer is etched in such a manner that the sample is maintained at a temperature of 100° C. to 200° C. The interlayer insulating layer and the polysilicon or SiO2 layer are separately etched in different chambers.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 29, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Go Saito, Toshiaki Nishida, Takahiro Shimomura, Takao Arase
  • Publication number: 20070281478
    Abstract: Plasma processing of plural substrates is performed in a plasma processing apparatus, which is provided with a plasma processing chamber having an antenna electrode and a lower electrode for placing and retaining the plural substrates in turn within the plasma processing chamber, a gas feeder for feeding processing gas into the processing chamber, a vacuum pump for discharging gas from the processing chamber via a vacuum valve, and a solenoid coil for forming a magnetic field within the processing chamber. At least one of the plural substrates is placed on the lower electrode, and the processing gas is fed into the processing chamber. RF power is fed to the antenna electrode via a matching network to produce a plasma within the processing chamber in which a magnetic field has been formed by the solenoid coil. This placing of at least one substrate and this feeding of the processing gas are then repeated until the plasma processing of all of the plural substrates is completed.
    Type: Application
    Filed: August 11, 2006
    Publication date: December 6, 2007
    Inventors: Eiji Ikegami, Shoji Ikuhara, Takeshi Shimada, Kenichi Kuwabara, Takao Arase, Tsuyoshi Matsumoto
  • Publication number: 20070026611
    Abstract: A method for manufacturing semiconductor devices includes a step of etching a sample including an interlayer insulating layer containing Al2O3 and a polysilicon or SiO2 layer in contact with the interlayer insulating layer using a plasma etching system. The interlayer insulating layer is etched with a gas mixture containing BCl3, Ar, and CH4 or He. The gas mixture further contains Cl2. The interlayer insulating layer is etched in such a manner that a time-modulated high-frequency bias voltage is applied to the sample. The interlayer insulating layer is etched in such a manner that the sample is maintained at a temperature of 100° C. to 200° C. The interlayer insulating layer and the polysilicon or SiO2 layer are separately etched in different chambers.
    Type: Application
    Filed: August 24, 2005
    Publication date: February 1, 2007
    Inventors: Go Saito, Toshiaki Nishida, Takahiro Shimomura, Takao Arase
  • Patent number: 7098138
    Abstract: A plasma processing method is provided of processing a sample having a silicon nitride layer with high accuracy of size in anisotropy and excellent selectivity to a silicon oxide layer as underlayer. A mixed atmosphere of chlorine gas containing no fluorine with aluminum is converted into plasma in a plasma etching processing chamber and the sample having the silicon nitride layer is etched by using the plasma.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 29, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Takao Arase, Motohiko Yoshigai, Go Saito, Masamichi Sakaguchi, Hiroaki Ishimura, Takahiro Shimomura
  • Publication number: 20060048892
    Abstract: A plasma processing method is provided of processing a sample having a silicon nitride layer with high accuracy of size in anisotropy and excellent selectivity to a silicon oxide layer as underlayer. A mixed atmosphere of chlorine gas containing no fluorine with aluminum is converted into plasma in a plasma etching processing chamber and the sample having the silicon nitride layer is etched by using the plasma.
    Type: Application
    Filed: October 20, 2005
    Publication date: March 9, 2006
    Inventors: Takao Arase, Motohiko Yoshigai, Go Saito, Masamichi Sakaguchi, Hiroaki Ishimura, Takahiro Shimomura