Patents by Inventor Takashi Kyono

Takashi Kyono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7933303
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Publication number: 20110075695
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface.
    Type: Application
    Filed: July 7, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Shinji TOKUYAMA, Takamichi SUMITOMO, Masaki UENO, Takatoshi IKEGAMI, Koji KATAYAMA, Takao NAKAMURA
  • Publication number: 20110075694
    Abstract: In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface.
    Type: Application
    Filed: July 7, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Shinji TOKUYAMA, Takamichi SUMITOMO, Masaki UENO, Takatoshi IKEGAMI, Koji KATAYAMA, Takao NAKAMURA
  • Publication number: 20110073888
    Abstract: A group III nitride semiconductor optical device includes: a substrate comprising a group III nitride semiconductor; a first group-III nitride semiconductor region on a primary surface of the substrate; a second group-III nitride semiconductor region on the primary surface of the substrate; and an active layer between the first group-III nitride semiconductor region and the second group-III nitride semiconductor region. The primary surface of the substrate tilts at a tilt angle in the range of 63 degrees to smaller than 80 degrees toward the m-axis of the group III nitride semiconductor from a plane perpendicular to a reference axis extending along the c-axis of the group III nitride semiconductor. The first group-III nitride semiconductor region, the active layer, and the second group-III nitride semiconductor region are arranged in the direction of the normal axis to the primary surface of the substrate. The active layer is configured to produce light having a wavelength in the range of 580 nm to 800 nm.
    Type: Application
    Filed: July 16, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Yusuke YOSHIZUMI
  • Publication number: 20110076788
    Abstract: A method of making a semiconductor light-emitting device involves the steps of selecting at least one tilt angle for a primary surface of a substrate to evaluate the direction of piezoelectric polarization in a light-emitting layer, the substrate comprising a group III nitride semiconductor; preparing a substrate having the primary surface, the primary surface having the selected tilt angle, and the primary surface comprising the group III nitride semiconductor; forming a quantum well structure and p- and n-type gallium nitride semiconductor layers for the light-emitting layer at the selected tilt angle to prepare a substrate product; measuring photoluminescence of the substrate product while applying a bias to the substrate product, to determine bias dependence of the photoluminescence; evaluating the direction of the piezoelectric polarization in the light-emitting layer at the selected tilt angle on the primary surface of the substrate by the determined bias dependence; determining which of the primary sur
    Type: Application
    Filed: July 15, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi KYONO, Yohei ENYA, Yusuke YOSHIZUMI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Masahiro ADACHI, Shinji TOKUYAMA
  • Publication number: 20110073892
    Abstract: A light emitting device having a relatively simple configuration is provided that emits stable light having a plurality of wavelengths. The light emitting device 1 comprises, in sequence, a composite substrate 3 and a gallium nitride-based semiconductor layer 5 including a light emitting layer 9. The composite substrate 3 includes a base 19 and a gallium nitride layer, the gallium nitride-based semiconductor layer 5 being disposed on a principal surface of the gallium nitride layer, the angle ? defined by the c-axis of the gallium nitride layer and a normal line N1 to the principal surface S1 of the gallium nitride layer ranging from 50 to 130 degrees, the light emitting layer 9 emitting light with an absolute value of the degree of polarization of 0.2 or more, the base 19 containing a fluorescent material that emits a fluorescent light component induced by irradiation of a light component emitted from the light emitting layer 9.
    Type: Application
    Filed: July 14, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Takashi KYONO
  • Publication number: 20110057200
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 10, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110057167
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Katsushi AKITA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110058585
    Abstract: A group-III nitride semiconductor laser device comprises a laser structure including a support base and a semiconductor region, and an electrode provided on the semiconductor region of the laser structure. The support base comprises a hexagonal group-III nitride semiconductor and has a semipolar primary surface, and the semiconductor region is provided on the semipolar primary surface of the support base. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer. The first cladding layer, the second cladding layer, and the active layer are arranged along a normal axis to the semipolar primary surface. The active layer comprises a gallium nitride-based semiconductor layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110042644
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 24, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Katsushi AKITA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Takao NAKAMURA
  • Patent number: 7883915
    Abstract: A method of making a nitride semiconductor laser comprises forming a first InGaN film for an active layer on a gallium nitride based semiconductor region, and the first InGaN film has a first thickness. In the formation of the first InGaN film, a first gallium raw material, a first indium raw material, and a first nitrogen raw material are supplied to a reactor to deposit a first InGaN for forming the first InGaN film at a first temperature, and the first InGaN has a thickness thinner than the first thickness. Next, the first InGaN is heat-treated at a second temperature lower than the first temperature in the reactor, while supplying a second indium raw material and a second nitrogen raw material to the reactor. Then, after the heat treatment, a second InGaN is deposited at least once to form the first InGaN film.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: February 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Takashi Kyono
  • Patent number: 7884351
    Abstract: In a nitride semiconductor light-emitting device (11), an emission region (17) has a quantum well structure (19), and lies between an n-type gallium nitride semiconductor region (13) and a p-type gallium nitride semiconductor region (15). The quantum well structure (19) includes a plurality of first well layers (21) composed of InxGa1-xN, one or a plurality of second well layers (23) composed of InyGa1-yN, and barrier layers (25). The first and second well layers (21) and (23) are arranged in alternation with the barrier layers (25). The second well layers (23) lie between the first well layers (21) and the p-type gallium nitride semiconductor region (15). The indium component y of the second well layers (23) is smaller than indium component x of the first well layers (21), and the thickness DW2 of the second well layers (23) is greater than the thickness DW1 of the first well layers (21).
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Katsushi Akita, Yusuke Yoshizumi
  • Publication number: 20110012126
    Abstract: An object is to provide a nitride-based semiconductor light emitting device capable of preventing a Schottky barrier from being formed at an interface between a contact layer and an electrode. LD 1 is provided as a nitride-based semiconductor light emitting device provided with a GaN substrate 3, a hexagonal GaN-based semiconductor region 5 provided on a primary surface S1 of the GaN substrate 3 and including a light emitting layer 11, and a p-electrode 21 provided on the GaN-based semiconductor region 5 and comprised of metal. The GaN-based semiconductor region 5 includes a contact layer 17 involving strain, the contact layer 17 is in contact with the p-electrode, the primary surface S1 extends along a reference plane S5 inclined at a predetermined inclination angle ? from a plane perpendicular to the c-axis direction of the GaN substrate 3, and the inclination angle ? is either in the range of more than 40° and less than 90° or in the range of not less than 150° and less than 180°.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takamichi SUMITOMO, Masaki UENO, Takashi KYONO, Yohei ENYA, Yusuke YOSHIZUMI
  • Publication number: 20110013656
    Abstract: A group III nitride substrate has a semi-polar primary surface. A first cladding layer has a first conductivity type, and comprises aluminum-containing group III nitride. The first cladding layer is provided on the substrate. An active layer is provided on the first cladding layer. A second cladding layer has a second conductivity type, and comprises aluminum-containing group III nitride. The second cladding layer is provided on the active layer. An optical guiding layer is provided between the first cladding layer and the active layer and/or between the second cladding layer and the active layer. The optical guiding layer comprises a first layer comprising Inx1Ga1-x1N (0?x1<1) and a second layer comprising Inx2Ga1-x2N (x1<x2<1). The second layer is provided between the first layer and the active layer. The total thickness of the first layer and the second layer is greater than 0.1 ?m. The wavelength of laser light is in a range of 480 nm to 550 nm.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Katsushi AKITA, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Shinji TOKUYAMA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Masaki UENO
  • Publication number: 20110013657
    Abstract: Provided is a III-nitride semiconductor laser diode capable of lasing to emit light of not less than 500 nm with use of a semipolar plane. Since an active layer 29 is provided so as to generate light at the wavelength of not less than 500 nm, the wavelength of light to be confined into a core semiconductor region 19 is a long wavelength. A first optical guide layer 27 is provided with a two-layer structure, and a second optical guide layer 31 is provided with a two-layer structure.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takamichi SUMITOMO, Yohei ENYA, Yusuke YOSHIZUMI, Masaki UENO, Katsushi AKITA, Takashi KYONO
  • Publication number: 20110007763
    Abstract: A method of making a nitride semiconductor laser comprises forming a first InGaN film for an active layer on a gallium nitride based semiconductor region, and the first InGaN film has a first thickness. In the formation of the first InGaN film, a first gallium raw material, a first indium raw material, and a first nitrogen raw material are supplied to a reactor to deposit a first InGaN for forming the first InGaN film at a first temperature, and the first InGaN has a thickness thinner than the first thickness. Next, the first InGaN is heat-treated at a second temperature lower than the first temperature in the reactor, while supplying a second indium raw material and a second nitrogen raw material to the reactor. Then, after the heat treatment, a second InGaN is deposited at least once to form the first InGaN film.
    Type: Application
    Filed: September 9, 2010
    Publication date: January 13, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Takashi KYONO
  • Patent number: 7858963
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: December 28, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Yohei Enya, Takashi Kyono, Katsushi Akita, Yusuke Yoshizumi, Takamichi Sumitomo, Takao Nakamura
  • Publication number: 20100322276
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: July 27, 2010
    Publication date: December 23, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Patent number: 7851821
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 14, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 7851243
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 14, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Yohei Enya, Takashi Kyono, Katsushi Akita, Yusuke Yoshizumi, Takamichi Sumitomo, Takao Nakamura