Patents by Inventor Takashi Mani

Takashi Mani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8273164
    Abstract: A fuel vapor processor has a fuel tank, a canister, a vapor pipe, a recovery pipe, an air pipe, a suction device, a vapor pipe valve, an air pipe valve, and a pressure regulator. The vapor pipe leads fuel vapor generated in the fuel tank to the canister for trapping the fuel vapor in the canister. The recovery pipe recoveries the fuel vapor desorbed from the canister into the fuel tank. The air pipe communicates the canister with the atmosphere. The suction device is disposed on the recovery pipe for desorbing the fuel vapor trapped in the canister. The pressure regulator is communicated with the air pipe between the air pipe valve and the canister in order to allow gas flow from the atmosphere toward the canister. During desorption of the fuel vapor due to the suction device, the vapor pipe valve and the air pipe valve are closed, and negative pressure is kept in the canister such that the fuel vapor is desorbed from the canister and fresh air is led into the canister via the pressure regulator.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: September 25, 2012
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Katsuhiko Makino, Masanobu Shinagawa, Hideki Teshima, Takashi Mani
  • Publication number: 20110247595
    Abstract: According to the present teaching, a fuel vapor processing apparatus includes a fuel tank, a canister capable of adsorbing fuel vapor produced in the fuel tank, a fuel pump disposed within the fuel tank, a fuel recovery device configured to recover the fuel vapor from the canister into the fuel tank, and a control device configured to stop recovery of the fuel vapor by the fuel recovery device based on at least one of parameters representing the amount of the fuel vapor remaining within the canister.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 13, 2011
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Tamotsu OGITA, Takashi MANI
  • Publication number: 20110011264
    Abstract: A fuel vapor processor has a fuel tank, a canister, a vapor pipe, a recovery pipe, an air pipe, a suction device, a vapor pipe valve, an air pipe valve, and a pressure regulator. The vapor pipe leads fuel vapor generated in the fuel tank to the canister for trapping the fuel vapor in the canister. The recovery pipe recoveries the fuel vapor desorbed from the canister into the fuel tank. The air pipe communicates the canister with the atmosphere. The suction device is disposed on the recovery pipe for desorbing the fuel vapor trapped in the canister. The pressure regulator is communicated with the air pipe between the air pipe valve and the canister in order to allow gas flow from the atmosphere toward the canister. During desorption of the fuel vapor due to the suction device, the vapor pipe valve and the air pipe valve are closed, and negative pressure is kept in the canister such that the fuel vapor is desorbed from the canister and fresh air is led into the canister via the pressure regulator.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 20, 2011
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Katsuhiko MAKINO, Masanobu SHINAGAWA, Hideki TESHIMA, Takashi MANI
  • Publication number: 20100294251
    Abstract: A fuel vapor processor has a fuel tank, a canister, a recovery pipe, a fuel pump, a negative pressure generator, a pressure regulator, a fuel intake pipe and a fuel intake regulator. The vapor pipe leads the fuel vapor generated in the fuel tank into the canister for trapping the fuel vapor. The recovery pipe connects the fuel tank and the canister for recovering the fuel vapor trapped in the canister into the fuel tank. The fuel intake pipe directly connects the fuel pump provided in the fuel tank with the negative pressure generator for leading fuel to the negative pressure generator. The negative pressure generator generates negative pressure depending on an amount of fuel supplied to the negative pressure generator from the fuel pump. The fuel vapor trapped in the canister is recovered to the fuel tank through the recovery pipe due to the negative pressure. The pressure regulator is connected with the fuel pump for returning excess fuel discharged from the fuel pump into the fuel tank.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 25, 2010
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Katsuhiko Makino, Junya Kimoto, Masanobu Shinagawa, Takashi Mani, Masakazu Hasegawa
  • Publication number: 20100288021
    Abstract: An apparatus for checking leakage from a fuel vapor processing apparatus includes an interrupting device capable of interrupting communication between a canister and a fuel tank when a pressure within the canister is negative and a pressure within the fuel tank is positive. A first pressure detecting device can detect the pressure within the canister or its equivalent. A second pressure detecting device can detect the pressure within the fuel tank or its equivalent.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 18, 2010
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Katsuhiko MAKINO, Junya KIMOTO, Takashi MANI, Masaki IKEYA
  • Publication number: 20100288242
    Abstract: A fuel vapor processing apparatus includes a purge air supply device including separation device that can separate gas, which is introduced from within a fuel tank, into a fuel component and an air component. The air component is supplied into a canister for purging the canister.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 18, 2010
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Katsuhiko Makino, Junya Kimoto, Masanobu Shinagawa, Takashi Mani
  • Publication number: 20100107877
    Abstract: One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e.
    Type: Application
    Filed: October 28, 2009
    Publication date: May 6, 2010
    Inventors: Masataka Suzuki, Takashi Suefuji, Akio Muraishi, Katsuhiko Makino, Toshiyuki Iwasaki, Takashi Mani