Patents by Inventor Takashi Nakabayashi

Takashi Nakabayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5756382
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment, P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: May 26, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 5736421
    Abstract: Mounted on a single semiconductor substrate are a DRAM, MOS transistor, resistor, and capacitor. The gate electrode of the DRAM and the gate electrode of the MOS transistor are formed by a common layer (i.e., a first-level poly-Si layer). The storage electrode of the DRAM. the resistor, and the lower electrode of the capacitor are formed by a common layer (i.e., a third-level poly-Si layer). The plate electrode of the DRAM and the upper electrode of the capacitor are formed by a common layer (i.e., a fourth-level poly-Si layer).
    Type: Grant
    Filed: January 23, 1996
    Date of Patent: April 7, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroshi Shimomura, Kiyoyuki Morita, Takashi Nakabayashi, Takashi Uehara, Mitsuo Yasuhira, Mizuki Segawa, Takehiro Hirai
  • Patent number: 5726071
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment. P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: March 10, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 5698902
    Abstract: There are provided: an isolation protruding upward from a semiconductor substrate in an active region; a gate electrode formed in the active region; and a pair of dummy electrodes formed to extend over the active region and the isolation and substantially in parallel with the gate electrode. Each of the gate electrode and dummy electrodes is composed of a lower film and an upper film. The lower films of the dummy electrodes are formed flush with the isolation and in contact with the side edges of the isolation. With the dummy electrodes, any gate electrode can be formed in a line-and-space pattern, so that the finished sizes of the gate electrode become uniform. This enables a reduction in gate length and therefore provides a semiconductor device of higher integration which is operable at a higher speed and substantially free from variations in finished size resulting from the use of different gate patterns.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: December 16, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Uehara, Toshiki Yabu, Mizuki Segawa, Takashi Nakabayashi, Minoru Fujii
  • Patent number: 5686340
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment. P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: November 11, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 5618748
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment, P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: April 8, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 5498908
    Abstract: A semiconductor apparatus with MOS transistors for transmitting electrons from an n type source layer to an n type drain layer through a first channel region in an n-channel MOS transistor and transmitting holes from a p type source layer to a p type drain layer through a second channel region in a p-channel MOS transistor consists of a field oxide layer for separating the n-channel MOS transistor from the p-channel MOS transistor, an n type gate electrode mounted on a first gate oxide film arranged on the first channel region, a p type gate electrode mounted on a second gate oxide film arranged on the second channel region and positioned far away from the n type gate electrode to prevent impurities implanted into one of tile gate electrodes from diffusing into the other gate electrode, and a gate metal wiring connecting the gate electrodes through a gate contact hole to miniaturize the transistors.
    Type: Grant
    Filed: January 30, 1995
    Date of Patent: March 12, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Nakabayashi, Takashi Uehara, Akihira Shinohara
  • Patent number: 5447872
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment, P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: September 5, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 5409847
    Abstract: Gate electrodes of an N-channel transistor and a P-channel transistor are formed on a semiconductor substrate with a gate insulator therebetween. After conducting a first thermal treatment to the gate electrodes, N-type heavily doped diffusion layers to be a source or a drain of the N-channel transistor are formed using the gate electrode of the N-channel transistor as a mask. After conducting a second thermal treatment to the N-type heavily doped diffusion layers at a lower temperature than that of the first thermal treatment, P-type heavily doped diffusion layers to be a source or a drain of the P-channel transistor are formed using the gate electrode of the P-channel transistor as a mask. Then, a third thermal treatment is conducted to the P-type heavily doped diffusion layers at a lower temperature than that of the second thermal treatment.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: April 25, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka, Takashi Nakabayashi, Atsushi Hori, Hiroshi Masuda, Ichiro Matsuo, Akihira Shinohara, Takashi Uehara, Mitsuo Yasuhira
  • Patent number: 4027075
    Abstract: This invention relates to a sodium sulfur storage battery including sulfur as a cathodic reactant, sodium as an anodic reactant and a non-porous solid electrolyte, the storage battery having a partition means in a chamber of sodium. According to this invention, even if a part of the solid electrolyte is broken, direct reaction between the both reactants is controlled in a smaller scale thus preventing the spread of electrolyte deterioration.
    Type: Grant
    Filed: January 29, 1975
    Date of Patent: May 31, 1977
    Assignee: Agency of Industrial Science & Technology
    Inventors: Takashi Nakabayashi, Hiroshi Kagawa