Patents by Inventor Takashi Yamanaka

Takashi Yamanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190204014
    Abstract: An evaporator includes a fluid chamber in which a working fluid flows. A condenser includes a gas-phase portion in which the working fluid evaporated in the evaporator flows and a liquid-phase portion in which the working fluid from the gas-phase portion, condensed by heat exchange with an external medium, flows. A gas-phase passage causes the working fluid evaporated in the evaporator to flow to the condenser. A liquid-phase passage causes the working fluid condensed in the condenser to flow to the evaporator. A bypass passage has one end connected to the liquid-phase portion of the condenser or the liquid-phase passage and another end connected to the gas-phase portion of the condenser or the gas-phase passage. A flow rate of a liquid-phase working fluid per unit volume in the bypass passage is smaller than a flow rate of a liquid-phase working fluid per unit volume in the liquid-phase portion of the condenser or the liquid-phase passage.
    Type: Application
    Filed: August 2, 2017
    Publication date: July 4, 2019
    Inventors: Takeshi YOSHINORI, Takashi YAMANAKA, Yoshiki KATO, Masayuki TAKEUCHI, Koji MIURA, Yasumitsu OMI
  • Publication number: 20190198954
    Abstract: A device temperature regulator is provided with a device heat exchanger that functions as an evaporator at the time of cooling a temperature regulation target device and that functions as a heat radiator at the time of warming up the temperature regulation target device, and a condenser that condenses a gaseous working fluid. The device temperature regulator is provided with a heater that heats the working fluid collecting in a device fluid circuit, and a liquid amount regulator that regulates a liquid amount of the working fluid collecting in the device heat exchanger. The device heat exchanger includes a heat exchange portion that exchanges heat with the temperature regulation target device. The liquid amount regulator regulates the liquid amount of the liquid working fluid collecting in the device heat exchanger.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: Koji MIURA, Yasumitsu OMI, Masayuki TAKEUCHI, Takeshi YOSHINORI, Takashi YAMANAKA, Yoshiki KATO
  • Publication number: 20190193213
    Abstract: A method for manufacturing a device temperature controller includes filling an inside of a circuit with working fluid by connecting a filling port of the circuit to a container that stores gas phase working fluid. The circuit constitutes a thermosiphon heat pipe and allows the working fluid to circulate in the circuit. In the filling, the working fluid inside the circuit is cooled by a cooling source. An inside temperature of the circuit is decreased to be lower than an inside temperature of the container, and thereby an inside pressure of the circuit is decreased to be lower than an inside pressure of the container.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: Yasumitsu OMI, Takashi YAMANAKA, Yoshiki KATO, Takeshi YOSHINORI, Masayuki TAKEUCHI, Koji MIURA
  • Publication number: 20190186843
    Abstract: A device temperature regulator includes a forward passage in which a forward flow passage is formed to cause a working fluid to flow to a heat absorber from a heat radiator, and a backward passage in which a backward flow passage is formed to cause the working fluid to flow to the heat radiator from the heat absorber. In addition, the device temperature regulator includes a bubble generator, which generates a bubble in the working fluid collecting in the heat absorber and having a liquid phase, and a controller that causes the bubble generator to generate the bubble in a precondition is satisfied.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Inventors: Masayuki TAKEUCHI, Yasumitsu OMI, Takashi YAMANAKA, Yoshiki KATO, Takeshi YOSHINORI, Koji MIURA
  • Publication number: 20190190102
    Abstract: A device temperature regulator is provided with a gas passage part that guides a gaseous working fluid evaporated in a device heat exchanger to a condenser, and a liquid passage part that guides a liquid working fluid condensed in the condenser to the device heat exchanger. The device temperature regulator is provided with a supply amount regulator that increases or decreases a supply amount of the liquid working fluid supplied to the device heat exchanger. The supply amount regulator decreases the supply amount of the liquid working fluid to the device heat exchanger such that a liquid surface is formed in a state where the gaseous working fluid is positioned at a lower side lower than a heat exchanging portion exchanging heat with a temperature regulation target device in the device heat exchanger, when a condition for keeping the temperature regulation target device at a temperature is satisfied.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Koji MIURA, Takashi YAMANAKA, Yasumitsu OMI, Yoshiki KATO, Masayuki TAKEUCHI, Takeshi YOSHINORI
  • Publication number: 20190184852
    Abstract: A device temperature adjusting apparatus in which working fluid circulates is mounted on a vehicle and controls a temperature of a target device. The device temperature adjusting apparatus includes a heat absorbing portion that evaporates the working fluid by causing the working fluid to absorb heat from the target device, and a heat releasing portion condenses the working fluid by causing heat release from the working fluid. The device temperature adjusting apparatus includes a forward path portion that defines a forward flow passage and a return path portion. The heat releasing portion is disposed in an inside air circulation path through which inside air circulates while vehicle interior air conditioning is performed by an air conditioning unit that blows out temperature-controlled air to an interior of the vehicle.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Masayuki TAKEUCHI, Yasumitsu OMI, Takashi YAMANAKA, Yoshiki KATO, Takeshi YOSHINORI, Koji MIURA
  • Patent number: 10315568
    Abstract: The device is provided with an image acquisition unit for acquiring a peripheral image of a vehicle, the peripheral image being captured by an image pickup device provided to the vehicle; a display device for displaying the peripheral image, the display device being provided inside a vehicle cabin; and an indicator line output unit for causing an indicator line as a guide for a driver during a driving operation to be displayed superimposed on the peripheral image, at least one of a shadow portion and a side surface portion adjacent to the indicator line being added to the indicator line.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: June 11, 2019
    Assignee: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Jun Kadowaki, Kazuya Watanabe, Takashi Yamanaka, Yumi Yamanaka
  • Publication number: 20190152394
    Abstract: The device is provided with an image acquisition unit for acquiring a peripheral image of a vehicle, the peripheral image being captured by an image pickup device provided to the vehicle; a display device for displaying the peripheral image, the display device being provided inside a vehicle cabin; and an indicator line output unit for causing an indicator line as a guide for a driver during a driving operation to be displayed superimposed on the peripheral image, at least one of a shadow portion and a side surface portion adjacent to the indicator line being added to the indicator line.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Jun KADOWAKI, Kazuya WATANABE, Takashi YAMANAKA
  • Patent number: 10168079
    Abstract: When a refrigerant flow-path switch performs switching to a first refrigerant flow path, an interior condenser heating air blown into an interior as a first temperature-adjustment subject and an auxiliary heat exchanger are connected in parallel, and the auxiliary heat exchanger heats air blown to a battery as a second temperature-adjustment subject. In contrast, when the refrigerant flow-path switch performs switching to a second refrigerant flow path, an interior evaporator cooling air blown into the interior and the auxiliary heat exchanger are connected in parallel, and the auxiliary heat exchanger cools the air blown to the battery. With this arrangement, one common auxiliary heat exchanger can cool or heat the air for the battery, thereby leading to reduction in size of an entire refrigeration cycle device.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 1, 2019
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Seiji Inoue, Takashi Yamanaka
  • Patent number: 10144297
    Abstract: Charging of an electrical storage device is completed by operation-starting time while increasing a percentage of a charging time of the electrical storage device in a first time period as compared to a percentage of the charging time in a second time period when the first time period and the second time period are included within a period from when a user sets the operation-starting time to the operation-starting time. A temperature adjustment device is operated such that a temperature of the electrical storage device at the operation-starting time falls within a target temperature range while increasing a percentage of an operating time of the temperature adjustment device in the first time period as compared to a percentage of the operating time in the second time period when the first time period and the second time period are included within the period from when the user sets the operation-starting time to the operation-starting time.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: December 4, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Murata, Yasumitsu Omi, Takashi Yamanaka, Masayuki Takeuchi
  • Publication number: 20180323482
    Abstract: A battery warming-up system includes a controller that controls an air-conditioning blower and a battery blower. A battery warming-up mode is executed to control at least one of the air-conditioning blower and the battery blower such that an air-side temperature efficiency in an air-conditioning heat exchanger is higher than an air-side temperature efficiency in a battery heat exchanger.
    Type: Application
    Filed: November 7, 2016
    Publication date: November 8, 2018
    Inventors: Koji MIURA, Takashi YAMANAKA, Yoshiki KATOH, Masayuki TAKEUCHI, Norihiko ENOMOTO, Keigo SATOU, Kengo SUGIMURA, Ariel MARASIGAN
  • Patent number: 10065478
    Abstract: A thermal management system for a vehicle includes a high-temperature side pump that draws and discharges a heat medium, a compressor that draws and discharges a refrigerant in a refrigeration cycle, a high-pressure side heat exchanger that exchanges heat between a high-pressure side refrigerant in the refrigeration cycle and the heat medium circulated by the high-temperature side pump, a heat medium-outside air heat exchanger that exchanges heat between the heat medium circulated by the high-temperature side pump and outside air, and a pump control unit that controls an operation of the high-temperature side pump such that the operation of the high-temperature side pump is continued even after the compressor is stopped. Thus, the cycle efficiency exhibited when restarting the compressor can be improved.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 4, 2018
    Assignee: DENSO CORPORATION
    Inventors: Masamichi Makihara, Takashi Yamanaka, Yasumitsu Omi, Koji Miura, Norihiko Enomoto, Nobuharu Kakehashi
  • Patent number: 9851127
    Abstract: A first outward passage and a second outward passage are branched from a branch portion to guide refrigerants to a first evaporator and a second evaporator, respectively. In the second outward passage with a longer refrigerant flow path of the first and second outward passages, a second decompressor is disposed closer to the branch portion rather than the second evaporator in the second outward passage. Further, a part of the second outward passage located on the downstream side of the refrigerant flow with respect to the second decompressor is defined by an inner pipe of a double pipe, and a part of a second return passage is defined by an outer pipe of the double pipe.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 26, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Takashi Yamanaka
  • Patent number: 9803904
    Abstract: A refrigerant cycle device for a vehicle includes a compressor which compresses and discharges refrigerant, a discharge capacity control portion which controls a discharge capacity of the compressor. The refrigerant cycle device further includes a noise determination portion which determines whether an audible noise other than a refrigerant passing noise is in a low noise state, and/or a load determination portion which determines whether an air-conditioning thermal load is in a high load state. The discharge capacity control portion performs a gradual activation control in which the discharge capacity of the compressor is set to be lower than that determined in a normal control, when the noise determination portion determines that the audible noise is in the low noise state, and/or when the load determination portion determines that the air-conditioning thermal load is in the high load state, at an activation time of the compressor.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: October 31, 2017
    Assignee: DENSO CORPORATION
    Inventors: Minoru Sasaki, Takashi Yamanaka, Takeshi Wakisaka, Motohiro Yamaguchi, Yasuaki Sasaki, Ken Matsunaga
  • Patent number: 9786964
    Abstract: In an operation mode for heating battery air, a refrigerant passage switching portion switches over to a first refrigerant passage in which a refrigerant including gas refrigerant flowing out of an interior condenser flows into an auxiliary heat exchanger through a first pipe having a relatively large passage cross-sectional area and a liquid refrigerant flowing out of the auxiliary heat exchanger flows to an inlet of an exterior heat exchanger through a second pipe having a relatively small passage cross-sectional area. Meanwhile, in an operation mode for cooling the battery air, the refrigerant passage switching portion switches over to a second refrigerant passage in which a liquid refrigerant flowing out of the exterior heat exchanger flows into the auxiliary heat exchanger through the second pipe and a gas refrigerant flowing out of the auxiliary heat exchanger flows to a suction port of a compressor through the first pipe.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 10, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Takashi Yamanaka
  • Publication number: 20170276176
    Abstract: A bearing apparatus is capable of stably supplying an appropriate amount of lubricating oil to a bearing with a simple arrangement, even if a peripheral speed of a rotational shaft increases. The bearing apparatus includes a bearing unit for receiving a load of a rotational shaft, a lubricating oil reservoir disposed below the bearing unit, and an oil disk rotatable together with the rotational shaft to scoop up lubricating oil stored in the lubricating oil reservoir. The oil disk has a side surface facing the bearing unit, the side surface having a groove formed therein. An outer-circumferential-side end surface of the groove extends parallel to an axial direction of the rotational shaft, and constitutes a guide surface for changing a direction of movement of the lubricating oil in the groove from a radial direction of the oil disk to the axial direction of the rotational shaft.
    Type: Application
    Filed: August 4, 2015
    Publication date: September 28, 2017
    Inventors: Kazuya HIRATA, Takashi YAMANAKA, Shigeru YOSHIKAWA, Dai KUDO
  • Patent number: 9770961
    Abstract: A temperature control system includes an on-vehicle battery, on-vehicle air conditioner, and a controller. The on-vehicle battery is charged using an external power supply located outside of the vehicle. The on-vehicle air conditioner controls the temperature of the vehicle interior and the temperature of the on-vehicle battery. The controller operates the on-vehicle air conditioner in an intermittent operation mode so as to control the temperature of the on-vehicle battery, when the on-vehicle battery is charged using the external power supply.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: September 26, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Murata, Yasumitsu Omi, Takashi Yamanaka, Masayuki Takeuchi
  • Patent number: 9738133
    Abstract: A refrigeration cycle device includes an air heat exchanger that heats air to be blown into an interior of a vehicle compartment using refrigerant discharged from a compressor, a high-stage side expansion valve decompressing the refrigerant flowing out of the air heat exchanger, and a battery heat exchanger that heats air to be blown to a battery using the refrigerant decompressed by the high-stage side expansion valve. In an air heating-warming up mode of heating the air for the interior and the air for the battery, a refrigerant discharge capacity of the compressor is controlled such that an air temperature for the interior approaches a target air temperature, and an opening degree of the high-stage side expansion valve is controlled such that a battery temperature becomes within a predetermined reference temperature range. A selector switch allows a passenger to select which operation of air conditioning or warming-up is prioritized.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: August 22, 2017
    Assignee: DENSO CORPORATION
    Inventors: Seiji Inoue, Masayuki Takeuchi, Takashi Yamanaka
  • Patent number: 9694646
    Abstract: In a refrigeration cycle device, a first evaporator for cooling a first cooling target and a second evaporator for cooling a second cooling target are arranged in parallel between a radiator and an accumulator, a first pressure reducer is arranged upstream of the first evaporator, and a mechanical expansion valve as a second pressure reducer is arranged upstream of the second evaporator. The refrigeration cycle device includes a refrigerant passage through which a portion of a refrigerant flowing out of the radiator flows while bypassing the second pressure reducer and the second evaporator, and is decompressed by a separate pressure reducer from the second pressure reducer, so as to return the refrigerant containing a liquid phase refrigerant to the accumulator, in a cooling operation mode for cooling only the second cooling target.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: July 4, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Takashi Yamanaka
  • Patent number: 9649908
    Abstract: A heat pump cycle includes a refrigerant circuit and a coolant circuit. A first heat exchanger and a second heat exchanger are disposed between the refrigerant circuit and the coolant circuit. The first heat exchanger includes an exterior heat exchanger that functions as an evaporator in a heating operation, and a radiator for radiating heat of a coolant. The second heat exchanger transmits a heat of high-pressure refrigerant to the coolant in the heating operation. A temperature of refrigerant within the second heat exchanger is higher than a temperature of refrigerant within the first heat exchanger. The heat obtained from the second heat exchanger is supplied to the first heat exchanger through the coolant. Further, the heat obtained from the second heat exchanger is stored in the coolant. In defrosting operation, the coolant that has stored the heat therein is supplied to the first heat exchanger.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: May 16, 2017
    Assignee: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Seiji Inoue, Takashi Yamanaka