Patents by Inventor Takatomo Sasaki

Takatomo Sasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060187994
    Abstract: A light-emitting apparatus composed of a light source that emits primary light and a phosphor that absorbs the primary light and emits secondary light offers high brightness, low power consumption, and a long lifetime while minimizing adverse effects on the environment. The phosphor is formed of a III-V group semiconductor in the form of fine-particle crystals each having a volume of 2 800 nm3 or less. The light emitted from the fine-particle crystals depends on their volume, and therefore giving the fine-particle crystals a predetermined volume distribution makes it possible to adjust the wavelength range of the secondary light.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 24, 2006
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masaya Ishida, Tatsuya Morioka, Daisuke Hanaoka, Mototaka Taneya, Shigeo Fujita, Yoichi Kawakami, Masafumi Harada, Takatomo Sasaki, Yusuke Mori
  • Publication number: 20060165578
    Abstract: The present invention provides a cesium-lithium-borate crystal, which can be used as a high-performance wavelength converting crystal, having a chemical composition expressed as CsLiB6O10, and substituted cesium-lithium-borate crystals expressed by the following formula: Cs1-xLi1-yMx+yB6O10 or Cs2(1?z)Li2LzB12O20 (where, M is an alkali metal element, and L is an alkali earth metal element); a method for manufacturing same by heating and melting; and an optical apparatus using such crystals.
    Type: Application
    Filed: December 23, 2005
    Publication date: July 27, 2006
    Inventors: Takatomo Sasaki, Akio Hiraki, Yusuke Mori, Sadao Nakai
  • Patent number: 7058103
    Abstract: A light-emitting apparatus composed of a light source that emits primary light and a phosphor that absorbs the primary light and emits secondary light offers high brightness, low power consumption, and a long lifetime while minimizing adverse effects on the environment. The phosphor is formed of a III–V group semiconductor in the form of fine-particle crystals each having a volume of 2 800 nm3 or less. The light emitted from the fine-particle crystals depends on their volume, and therefore giving the fine-particle crystals a predetermined volume distribution makes it possible to adjust the wavelength range of the secondary light.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: June 6, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masaya Ishida, Tatsuya Morioka, Daisuke Hanaoka, Mototaka Taneya, Shigeo Fujita, Yoichi Kawakami, Masafumi Harada, Takatomo Sasaki, Yusuke Mori
  • Publication number: 20060102066
    Abstract: A borate-based crystal excellent in uniformity and reliability, which is useful as an optical wavelength conversion device, etc., and can be easily produced at low cost in a short period of time, by the steps of dissolving water-soluble starting materials in water to prepare an aqueous solution, evaporating water in the aqueous solution followed by sintering or evaporating the water and not sintering, thereby forming a crystal growth material, and melting the resultant material to grow a crystal. Further, a highly reliable laser oscillation apparatus can be achieved by using this crystal as an optical wavelength conversion device.
    Type: Application
    Filed: February 13, 2004
    Publication date: May 18, 2006
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Muneyuki Nishioka, Satoru Fukumoto, Tomoyo Matsui, Takashi Saji
  • Patent number: 7029528
    Abstract: There are provided a method of superflattening an oxide crystal that is soluble neither with acid nor with alkaline, a method of making a ReCa4O(BO3)3 family oxide single crystal thin film using the superflattening method, a ReCa4O(BO3)3 family oxide single crystal thin film having a SHG property, a superflattening method for light incident/emitting surfaces, and a defect assessing method for oxide crystals. The surface of an oxide crystal that is soluble neither with acid nor with alkaline is reduced with a reducing agent, the reduced oxide crystal surface is dissolved with an aqueous solution of acid or alkaline, the surface dissolved oxide crystal is heat-treated in the atmosphere, whereby the surface of an oxide crystal that is soluble neither with acid nor with alkaline is superflattened to an atomic level.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 18, 2006
    Assignee: Japan Science and Technology Corporation
    Inventors: Hideomi Koinuma, Yuji Matsumoto, Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura
  • Publication number: 20060051942
    Abstract: A method for producing a Group III element nitride single crystal, which comprises reacting at least one Group III element selected from the group consisting of gallium(Ga), aluminum(Al) and indium(In) with nitrogen(N) in a mixed flux of sodium(Na) and at least one of an alkali metal (except Na) and an alkaline earth metal. The method allows the production, with a good yield, of the single crystal of a group III element nitride which is transparent, is reduced in the density of dislocation, has a bulk form, and is large. In particular, a gallium nitride single crystal produced by the method has high quality and takes a large and transparent bulk form, and thus has a high practical value.
    Type: Application
    Filed: June 30, 2003
    Publication date: March 9, 2006
    Applicant: Osaka Industrial Promotion Organization
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Kunimichi Omae, Tomoya Iwahashi, Masanori Morishita
  • Patent number: 7006539
    Abstract: There is provided a nonlinear optical crystal which is presented by the formula: K2Al2B2O7. This nonlinear optical crystal is a vacuum ultraviolet light generating nonlinear optical crystal which is easy to grow and of high practical use. There are also provided a wavelength conversion method using this crystal, and an element and a wavelength conversion apparatus for use in the method.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: February 28, 2006
    Assignee: Japan Science and Technology Corporation
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura
  • Publication number: 20060012011
    Abstract: A method of processing a surface of a nitride semiconductor crystal, wherein a surface of a nitride semiconductor crystal is brought into contact with a liquid containing at least Na, Li or Ca as a processing solution. In the method, the processing solution can be a liquid containing at least Na, having an Na content of 5-95 mol %. The processing solution can be a liquid containing at least Li, having an Li content of 5-100 mol %. A nitride semiconductor crystal having a maximum depth of a surface scratch of at most 0.01 ?m or an average thickness of a damaged layer of at most 2 ?m. Consequently, a method of processing a surface of a nitride semiconductor crystal with a decreased depth of a surface scratch or a decreased thickness of a damaged layer, and a nitride semiconductor crystal obtained with the method can be provided.
    Type: Application
    Filed: June 3, 2004
    Publication date: January 19, 2006
    Inventors: Seiji Nakahata, Ryu Hirota, Keiji Ishibashi, Takatomo Sasaki, Yusuke Mori
  • Publication number: 20050254118
    Abstract: There is provided a nonlinear optical crystal which is presented by the formula: K2Al2B2O7. This nonlinear optical crystal is a vacuum ultraviolet light generating nonlinear optical crystal which is easy to grow and of high practical use. There are also provided a wavelength conversion method using this crystal, and an element and a wavelength conversion apparatus for use in the method.
    Type: Application
    Filed: June 30, 2005
    Publication date: November 17, 2005
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Zhang-Gui Hu
  • Publication number: 20050241568
    Abstract: The present invention relates to a process for producing high-quality crystals of protein or organic substances easily and efficiently. A solution of protein or an organic substance is prepared and then is cooled slowly to be supersaturated to a low degree. This supersaturated solution is irradiated with a femtosecond laser 10. A local explosion phenomenon occurs at the focal point of the laser and thereby a crystalline nucleus is generated. A high-quality crystal is obtained when a crystal is grown on the crystalline nucleus over a long period of time. The femtosecond laser to be used herein can be a titanium:sapphire laser having a wavelength of 800 nm, a duration of 120 fs, a frequency of 1 kHz, and an output of 400 mW.
    Type: Application
    Filed: August 25, 2003
    Publication date: November 3, 2005
    Applicant: Osaka Industrial Promotion Organization
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Hiroaki Adachi, Hiroshi Masuhara, Youichiroh Hosokawa, Kazufumi Takano
  • Publication number: 20050225837
    Abstract: In a wavelength converting method, an ambient that is in contact with a surface of a non-linear optical crystal from which wavelength-converted light is outputted is a gas that is lower in content of nitrogen than air. A wavelength converting device includes a device for controlling the ambient in contact with a surface of the non-linear optical crystal from which the wavelength-converted light is outputted so the ambient is lower in nitrogen than air. A laser machining device includes the wavelength converting device.
    Type: Application
    Filed: December 12, 2001
    Publication date: October 13, 2005
    Inventors: Tetsuo Kojima, Susumu Konno, Shuichi Fujikawa, Koji Yasui, Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura
  • Publication number: 20050153471
    Abstract: There is provided a method of manufacturing a group-III nitride crystal in which a nitrogen plasma is brought into contact with a melt containing a group-III element and an alkali metal to grow the group-III nitride crystal. Furthermore, there is also provided a method of manufacturing a group-III nitride crystal in which the group-III nitride crystal is grown on a substrate placed in a melt containing a group-III element and an alkali metal, with a minimal distance between a surface of the melt and a surface of the substrate set to be at most 50 mm.
    Type: Application
    Filed: November 29, 2004
    Publication date: July 14, 2005
    Applicants: Sumitomo Electric Industries, Ltd., Yusuke MORI
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Ryu Hirota
  • Publication number: 20050059229
    Abstract: The present invention provides a Group III nitride crystal substrate whose surface has concavities and convexities reduced in size. The surfaces with concavities and convexities, such as hillocks, pits and facets, of Group III nitride crystals are brought into contact with a melt and thereby the surfaces are subjected to meltback etching or mechanochemical polishing. The melt includes at least one of alkali metal and alkaline-earth metal. Thus a Group III nitride crystal substrate that has reduced strain and a reduced number of defects, which are caused through the processing, and is excellent in surface flatness is manufactured. Furthermore, by the use of the Group III nitride crystal substrate of the present invention, for instance, semiconductor devices of high performance can be obtained.
    Type: Application
    Filed: August 4, 2004
    Publication date: March 17, 2005
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Takatomo Sasaki, Fumio Kawamura
  • Publication number: 20050048686
    Abstract: The present invention provides a manufacturing method in which high quality GaN crystals and GaN crystal substrates can be manufactured under mild conditions of low pressure and low temperature. In a method of manufacturing GaN crystals in which in a gas atmosphere containing nitrogen, gallium and the nitrogen are allowed to react with each other to generate GaN crystals in a mixed melt of the gallium and sodium, the gallium and the nitrogen are allowed to react with each other under a pressurizing condition that exceeds atmospheric pressure, and pressure P1 (atm (×1.013×105 Pa)) of the pressurizing condition is set so as to satisfy the condition that is expressed by the following conditional expression (I): P?P1<(P+45)??(I), where in the expression (I), P(atm (×1.013×105 Pa)) denotes the minimum pressure that is required for generating GaN crystals at a temperature T°C. of the mixed melt.
    Type: Application
    Filed: July 2, 2004
    Publication date: March 3, 2005
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Masanori Morishita
  • Publication number: 20050011432
    Abstract: The present invention provides a method of manufacturing Group III nitride crystals that are of high quality, are manufactured efficiently, and are useful and usable as a substrate for semiconductor manufacturing processes. A semiconductor layer that is made of a semiconductor and includes crystal-nucleus generation regions at its surface is formed. The semiconductor is expressed by a composition formula of AluGavIn1-u-vN (where 0?u?1, 0?v?1, and u+v?1). Group III nitride crystals then are grown on the semiconductor layer by bringing the crystal-nucleus generation regions of the semiconductor layer into contact with a melt in an atmosphere including nitrogen. The melt contains nitrogen, at least one Group III element selected from the group consisting of gallium, aluminum, and indium, and at least one of alkali metal and alkaline-earth metal.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 20, 2005
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., Yusuke Mori
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 6843849
    Abstract: In a method for growing a single crystal by bringing a seed crystal (4) into contact with a melt (2) of raw materials melted under heating in a crucible (1) a blade member (5) or a baffle member in disposed in the raw material melt (2) in the crucible (1) and a single crystal is grown by pulling up it with rotating the crucible (1) to thereby grow various single crystals including CLBO from the highly viscous raw material melt (2) as high quality and high performance crystals.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: January 18, 2005
    Assignee: Japan Science and Technology Corporation
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura
  • Publication number: 20040262630
    Abstract: The present invention provides a method of manufacturing Group III nitride crystals that are of high quality, are manufactured highly efficiently, and are useful and usable as a substrate that is used in semiconductor manufacturing processes.
    Type: Application
    Filed: May 27, 2004
    Publication date: December 30, 2004
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., Yusuke MORI
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Masanori Morishita
  • Publication number: 20040250747
    Abstract: The present invention provides a method of manufacturing a gallium nitride single crystal that can suppress the decomposition of gallium nitride and improve production efficiency in a sublimation method. According to the manufacturing method, a material (GaN powder) for the gallium nitride (GaN) single crystal is placed inside a crucible, sublimed or evaporated by heating, and cooled on a substrate surface to return to a solid again, so that the gallium nitride single crystal is grown on the substrate surface. The growth of the single crystal is performed under pressure. The pressure is preferably not less than 5 atm (5×1.013×105 Pa). The single crystal is grown preferably in a mixed gas atmosphere containing NH3 and N2.
    Type: Application
    Filed: March 25, 2004
    Publication date: December 16, 2004
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Masashi Yoshimura, Yasunori Kai, Mamoru Imade, Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi
  • Publication number: 20040183090
    Abstract: The present invention provides a manufacturing method that allows a Group III nitride substrate with a low dislocation density to be manufactured, and a semiconductor device that is manufactured using the manufacturing method. The manufacturing method includes, in an atmosphere including nitrogen, allowing a Group III element and the nitrogen to react with each other in an alkali metal melt to cause generation and growth of Group III nitride crystals. In the manufacturing method, a plurality of portions of a Group III nitride semiconductor layer are prepared, selected as seed crystals, and used for at least one of the generation and the growth of the Group III nitride crystals, and then surfaces of the seed crystals are brought into contact with the alkali metal melt.
    Type: Application
    Filed: March 18, 2004
    Publication date: September 23, 2004
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., Yusuke MORI
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Akihiko Ishibashi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Publication number: 20040123794
    Abstract: There are provided a method of superflattening an oxide crystal that is soluble neither with acid nor with alkaline, a method of making a ReCa4O(BO3)3 family oxide single crystal thin film using the superflattening method, a ReCa4O(BO3)3 family oxide single crystal thin film having a SHG property, a superflattening method for light incident/emitting surfaces, and a defect assessing method for oxide crystals. The surface of an oxide crystal that is soluble neither with acid nor with alkaline is reduced with a reducing agent, the reduced oxide crystal surface is dissolved with an aqueous solution of acid or alkaline, the surface dissolved oxide crystal is heat-treated in the atmosphere, whereby the surface of an oxide crystal that is soluble neither with acid nor with alkaline is superflattened to an atomic level.
    Type: Application
    Filed: September 15, 2003
    Publication date: July 1, 2004
    Inventors: Hideomi Koinuma, Yuji Matsumoto, Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura