Patents by Inventor Takefumi Ito

Takefumi Ito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170352894
    Abstract: An electrolyte-circulating battery according to the present invention includes a cell frame including a bipolar plate in contact with an electrode that forms a battery cell, and a frame that surrounds a peripheral edge of the bipolar plate; and a sealing member that is disposed on the frame and that prevents an electrolyte supplied to the battery cell from leaking out of the frame. The frame has a seal groove in which the sealing member is fitted. The seal groove includes a narrow section that causes the sealing member to elastically deform to prevent the sealing member from becoming detached from the seal groove. The narrow section has a width that is uniform in a depth direction of the seal groove.
    Type: Application
    Filed: October 21, 2015
    Publication date: December 7, 2017
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kanno, Ryo Sato, Katsuya Yamanishi, Takefumi Ito
  • Publication number: 20170324108
    Abstract: Provided are a battery cell that can be produced efficiently. A frame body of each cell frame of a battery cell includes an inner peripheral recessed portion formed by reducing a thickness of a peripheral portion that surrounds an entire perimeter of the penetrating window so that the peripheral portion has a smaller thickness than other portions of the frame body. A bipolar plate of the battery cell includes an outer peripheral engaging portion that engages with the inner peripheral recessed portion, the outer peripheral engaging portion being a portion having a particular width and extending throughout an entire outer periphery of the bipolar plate.
    Type: Application
    Filed: October 5, 2015
    Publication date: November 9, 2017
    Inventors: Hideyuki Yamaguchi, Katsuya Yamanishi, Takashi Kanno, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Kiyoaki Hayashi, Hayato Fujita, Kousuke Shiraki
  • Publication number: 20170237104
    Abstract: The battery cell for a flow battery includes a cell frame including a frame including a through-window and a manifold serving as an electrolyte flow path, and a bipolar plate blocking the through-window; a positive electrode disposed on one surface side of the bipolar plate; and a negative electrode disposed on another surface side of the bipolar plate. In this battery cell, in the frame, a thickness of a portion in which the manifold is formed is defined as Ft; in the bipolar plate, a thickness of a portion blocking the through-window is defined as Bt; in the positive electrode, a thickness of a portion facing the bipolar plate is defined as Pt; in the negative electrode, a thickness of a portion facing the bipolar plate is defined as Nt; and these thicknesses satisfy Ft?4 mm, Bt?Ft?3.0 mm, Pt?1.5 mm, and Nt?1.5 mm.
    Type: Application
    Filed: October 5, 2015
    Publication date: August 17, 2017
    Inventors: Takashi Kanno, Katsuya Yamanishi, Takefumi Ito, Masahiro Kuwabara, Kiyoaki Moriuchi, Hideyuki Yamaguchi, Hayato Fujita, Kousuke Shiraki, Kiyoaki Hayashi
  • Publication number: 20170110741
    Abstract: A cell frame for a redox flow battery comprises: a bipolar plate; and a frame body provided at an outer periphery of the bipolar plate, the frame body including a manifold which penetrates through front and back surfaces of the frame body and through which an electrolyte flows, and at least one slit being formed on the front surface of the frame body and forming a channel of the electrolyte between the manifold and the bipolar plate, a cross sectional shape of the slit, in a longitudinal direction of the slit, having a width w and a depth h, the width w and the depth h satisfying (A) w?3 mm and (B) 1/8<h/w<1.
    Type: Application
    Filed: March 18, 2016
    Publication date: April 20, 2017
    Inventors: Takefumi Ito, Takashi Kanno, Masahiro Kuwabara, Katsuya Yamanishi, Hideyuki Yamaguchi, Hayato Fujita, Kiyoaki Hayashi, Kousuke Shiraki, Kiyoaki Moriuchi
  • Publication number: 20150170781
    Abstract: A copper alloy according to the present invention is a copper alloy rolled to be plate-shaped. The copper alloy contains 8.5 to 9.5 mass % of Ni, 5.5 to 6.5 mass % of Sn with a remainder being Cu and unavoidable impurities. An average diameter of crystal grains in a cross section perpendicular to a rolling direction is less than 6 ?m. A ratio x/y of an average length x of the crystal grains in a plate width direction to an average length y in a plate thickness direction satisfies 1?x/y?2.5. An X-ray diffracted intensity ratio in a plate surface parallel to the rolling direction of the copper alloy includes, when an X-ray diffracted intensity of a (220) plane is standardized as 1, an intensity ratio of a (200) plane being 0.30 or less, an intensity ratio of a (111) plane being 0.45 or less, and an intensity ratio of a (311) plane being 0.60 or less. The intensity ratio of the (111) plane is greater than the intensity ratio of the (200) plane and smaller than the intensity ratio of the (311) plane.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 18, 2015
    Applicants: Mitsubishi Electric Corporation, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Takefumi Ito, Chisako Maeda, Yuji Yoshida, Kei Saegusa, Takayuki Kemmotsu
  • Patent number: 9017869
    Abstract: This invention provides a cell stack for a redox flow battery that can provide battery efficiencies with high reliability over a long term, without any adhesive bonding between a bipolar plate and electrodes. In the cell stack 1 for the redox flow battery of a cell frame 2, electrodes 3, 4 and a membrane 5 being stacked in layers, the cell frame 2 comprises a frame 2A and a bipolar plate 9 arranged inside of the frame 2A, and the electrodes 3, 4 are put into close contact with the bipolar plate 9 by a clamping force, without being adhesively bonded to the bipolar plate 9. It is preferable that when the electrodes 3, 4 are compressed to a thickness corresponding to a level difference between the frame 2A and the bipolar plate 9, repulsive force of the electrodes is in the range of more than 15 kPa to less than 150 kPa (more than 0.153 kgf/cm2 to less than 1.53 kgf/cm2).
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: April 28, 2015
    Assignees: Sumitomo Electric Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokuda
  • Publication number: 20140369883
    Abstract: To obtain a copper alloy having a tensile strength of 700 N/mm2 or more and a conductivity of 60% IACS or more, a copper alloy of the present invention comprises from 0.8 mass % to 1.8 mass % of Co, from 0.16 mass % to 0.6 mass % of Si, and the balance of Cu and unavoidable impurities, in which a mass ratio of Co to Si (Co/Si) is between 3.0 and 5.0; a size of inclusions to be precipitated in the copper alloy is 2 ?m or less; and a total volume of the inclusions having a size of between 0.05 ?m and 2 ?m in the copper alloy is 0.5 vol % or less.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Applicants: MITSUBISHI ELECTRIC CORPORATION, MITSUBISHI ELECTRIC METECS CO., LTD.
    Inventors: Takefumi ITO, Toshikazu KAWAHATA, Yumiko IWASHITA, Toshihiro KURITA, Takayuki NAGAI
  • Patent number: 7727345
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: June 1, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takanori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Patent number: 7670719
    Abstract: This invention provides a cell frame for a redox flow battery that prevents leakage of electrolyte out of the cell frame and also provides a good workability in assembling the redox flow battery. Also, this invention provides a redox flow battery using the cell frame. In the cell frame 30 for the redox flow battery 30 comprising a bipolar plate 21 and a frame 31 fitted around a periphery of the bipolar plate 21, the frame 31 has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte. The frame 31 has, on each side thereof, an inner seal groove 34 and an outer seal groove 35 for placing therein the inner seal and the outer seal, respectively, to prevent the electrolyte from leaking out, and O-rings are placed in the respective seal grooves.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 2, 2010
    Assignees: Sumitomo Electric Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokuda
  • Publication number: 20080277033
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Application
    Filed: July 16, 2008
    Publication date: November 13, 2008
    Applicants: MITSUBISHI DENKI KABUSHIKI KAISHA, MITSUBISHI ELECTRIC METECS CO., LTD.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takanori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Patent number: 7413619
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 19, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takenori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Publication number: 20080081247
    Abstract: This invention provides a cell frame for a redox flow battery that prevents leakage of electrolyte out of the cell frame and also provides a good workability in assembling the redox flow battery. Also, this invention provides a redox flow battery using the cell frame. In the cell frame 30 for the redox flow battery 30 comprising a bipolar plate 21 and a frame 31 fitted around a periphery of the bipolar plate 21, the frame 31 has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte. The frame 31 has, on each side thereof, an inner seal groove 34 and an outer seal groove 35 for placing therein the inner seal and the outer seal, respectively, to prevent the electrolyte from leaking out, and O-rings are placed in the respective seal grooves.
    Type: Application
    Filed: November 7, 2007
    Publication date: April 3, 2008
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokyda
  • Publication number: 20080056930
    Abstract: To obtain a copper alloy having a tensile strength of 700 N/mm2 or more and a conductivity of 60% IACS or more, a copper alloy of the present invention comprises from 0.8 mass % to 1.8 mass % of Co, from 0.16 mass % to 0.6 mass % of Si, and the balance of Cu and unavoidable impurities, in which a mass ratio of Co to Si (Co/Si) is between 3.0 and 5.0; a size of inclusions to be precipitated in the copper alloy is 2 ?m or less; and a total volume of the inclusions having a size of between 0.05 ?m and 2 ?m in the copper alloy is 0.5 vol % or less.
    Type: Application
    Filed: June 6, 2007
    Publication date: March 6, 2008
    Applicants: MITSUBISHI ELECTRIC CORPORATION, MITSUBISHI ELECTRIC METECS CO., LTD.
    Inventors: Takefumi ITO, Toshikazu Kawahata, Yumiko Iwashita, Toshihiro Kurita, Takayuki Nagai
  • Patent number: 7220515
    Abstract: A simplified, pressure-variation preventing tank structure capable of preventing pressure variations in a gas phase portion resulting from temperature variations, without bringing stored liquid into contact with air. This pressure-variation preventing structure includes a breather bag arranged in a gas phase portion of a tank and inflating/deflating in communication with outside air, and a manhole to which the breather bag is attached to suspend in a gas phase portion, including a communication hole for the breather bag to communicate with outside air. The breather bag has air-blocking, acid-resistant and expandable characteristics.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: May 22, 2007
    Assignees: Sumitomo Electric Industries, Ltd., Kansai Electric Power Co., Inc.
    Inventors: Takefumi Ito, Nobuyuki Tokuda
  • Publication number: 20060201591
    Abstract: Raw materials for a copper alloy are melted in a high frequency smelter and cast, and milling, rolling, and annealing are carried out. Then, rolling is again carried out. Thereafter, the materials are heated at a temperature of 900° C. for one minute and are quenched in water, to be solution treated. Subsequently, the materials are heated at a temperature of 500° C. for five hours for aging, and then are cooled at a cooling rate in a range of 10 to 50° C. per hour until the materials are cooled to a temperature of 380° C.
    Type: Application
    Filed: February 21, 2006
    Publication date: September 14, 2006
    Applicants: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Toshikazu Kawahata, Takefumi Ito, Takenori Sone, Yumiko Iwashita, Toshihiro Kurita
  • Publication number: 20040241544
    Abstract: This invention provides a cell stack for a redox flow battery that can provide battery efficiencies with high reliability over a long term, without any adhesive bonding between a bipolar plate and electrodes. In the cell stack 1 for the redox flow battery of a cell frame 2, electrodes 3, 4 and a membrane 5 being stacked in layers, the cell frame 2 comprises a frame 2A and a bipolar plate 9 arranged inside of the frame 2A, and the electrodes 3, 4 are put into close contact with the bipolar plate 9 by a clamping force, without being adhesively bonded to the bipolar plate 9. It is preferable that when the electrodes 3, 4 are compressed to a thickness corresponding to a level difference between the frame 2A and the bipolar plate 9, repulsive force of the electrodes is in the range of more than 15 kPa to less than 150 kPa (more than 0.153 kgf/cm2 to less than 1.53 kgf/cm2).
    Type: Application
    Filed: July 19, 2004
    Publication date: December 2, 2004
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokuda
  • Publication number: 20040202915
    Abstract: A cell frame for a redox-flow cell excellent in sealability between a frame member and a dipole sheet and a redox-flow cell having it are disclosed. The cell frame is composed of a dipole sheet (9) and a frame member (2A) attached to the periphery of the dipole sheet (9). The frame member (2A) contains 50 mass % or more of vinyl chloride. The dipole sheet is made of a conductive plastic containing 40-90 mass % of graphite and 10-60 mass % of a chlorinated organic compound. Chloride.
    Type: Application
    Filed: May 3, 2004
    Publication date: October 14, 2004
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokuda
  • Publication number: 20040170893
    Abstract: This invention provides a cell frame for a redox flow battery that prevents leakage of electrolyte out of the cell frame and also provides a good workability in assembling the redox flow battery. Also, this invention provides a redox flow battery using the cell frame. In the cell frame 30 for the redox flow battery 30 comprising a bipolar plate 21 and a frame 31 fitted around a periphery of the bipolar plate 21, the frame 31 has, on each side thereof, an inner seal and an outer seal to press-contact with a membrane and also seal electrolyte. The frame 31 has, on each side thereof, an inner seal groove 34 and an outer seal groove 35 for placing therein the inner seal and the outer seal, respectively, to prevent the electrolyte from leaking out, and O-rings are placed in the respective seal grooves.
    Type: Application
    Filed: April 15, 2004
    Publication date: September 2, 2004
    Inventors: Hiroyuki Nakaishi, Takashi Kanno, Seiji Ogino, Takefumi Ito, Toshio Shigematsu, Nobuyuki Tokuda
  • Patent number: D756912
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: May 24, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryo Sato, Katsuya Yamanishi, Takefumi Ito, Takashi Kanno
  • Patent number: D795180
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 22, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryo Sato, Katsuya Yamanishi, Takefumi Ito, Takashi Kanno