Patents by Inventor Takehisa Minowa

Takehisa Minowa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8252123
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: August 28, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 8231740
    Abstract: A rare earth permanent magnet material is prepared by covering a sintered magnet body of R1—Fe—B composition wherein R1 is a rare earth element, with a powder comprising at least 30% by weight of an alloy of R2aTbMcAdHe wherein R2 is a rare earth element, T is Fe and/or Co, and M is Al, Cu or the like, and having an average particle size up to 100 ?m, and heat treating the powder-covered magnet body at a suitable temperature, for causing R2, T, M and A in the powder to be absorbed in the magnet body.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: July 31, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Takehisa Minowa, Koichi Hirota
  • Publication number: 20120175559
    Abstract: Phosphor particles are provided in the form of spherical polycrystalline secondary particles consisting of a multiplicity of primary particles, including a garnet phase having the composition: (AxByCz)3C5O12 wherein A is Y, Gd, and/or Lu, B is Ce, Nd, and/or Tb, C is Al and/or Ga, and x, y and z are in the range: 0.002<y?0.2, 0 <z?2/3, and x+y+z=1. The phosphor particles are prepared by granulating powder oxides containing one or more of the elements A, B, and C, melting the granules in a plasma and solidifying outside the plasma, and heat treating the resulting particles in a non-oxidizing atmosphere at a temperature of higher than 800° C. to 1,700° C.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 12, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshihiko Tsukatani, Kazuhiro Wataya, Yasushi Takai, Takehisa Minowa
  • Publication number: 20120175658
    Abstract: Phosphor particles are provided in the form of spherical polycrystalline secondary particles consisting of a multiplicity of primary particles, including a garnet phase having the compositional formula: (A1-xBx)3C5O12 wherein A is Y, Gd, and/or Lu, B is Ce, Nd, and/or Tb, C is Al and/or Ga, and 0.002?x?0.2, the secondary particles having an average particle size of 5-50 ?m.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 12, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshihiko Tsukatani, Kazuhiro Wataya, Yasushi Takai, Takehisa Minowa
  • Patent number: 8211327
    Abstract: A method for preparing a rare earth permanent magnet material comprising the steps of: disposing a powder comprising one or more members selected from an oxide of R2, a fluoride of R3, and an oxyfluoride of R4 wherein R2, R3 and R4 each are one or more elements selected from among rare earth elements inclusive of Y and Sc on a sintered magnet form of a R1—Fe—B composition wherein R1 is one or more elements selected from among rare earth elements inclusive of Y and Sc, and heat treating the magnet form and the powder at a temperature equal to or below the sintering temperature of the magnet in vacuum or in an inert gas. The invention offers a high performance, compact or thin permanent magnet having a high remanence and coercivity at a high productivity.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 3, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Koichi Hirota, Takehisa Minowa
  • Publication number: 20120132130
    Abstract: A method of producing a SiC single crystal includes: disposing a SiC seed crystal at a bottom part inside a graphite crucible; causing a solution containing Si, C and R (R is at least one selected from the rare earth elements inclusive of Sc and Y) or X (X is at least one selected from the group consisting of Al, Ge, Sn, and transition metals exclusive of Sc and Y) to be present in the crucible; supercooling the solution so as to cause the SiC single crystal to grow on the seed crystal; and adding powdery or granular Si and/or SiC raw material to the solution from above the graphite crucible while keeping the growth of the SiC single crystal.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 31, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tadao Nomura, Norio Yamagata, Takehisa Minowa
  • Patent number: 8177881
    Abstract: Solvent extraction from an aqueous phase containing first and second rare earth elements is carried out by contacting an organic phase containing a diglycolamic acid as an extractant and a hydrocarbon or a low-polar alcohol as a solvent, with the aqueous phase below pH 3 for extracting the first rare earth element into the organic phase, back-extracting from the organic phase with an aqueous acid solution for recovering the first rare earth element, and recovering the second rare earth element which has not been extracted into the organic phase and has remained in the aqueous phase.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 15, 2012
    Assignees: Shin-Etsu Chemical Co., Ltd., Japan Atomic Energy Agency
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa, Hirochika Naganawa, Kojiro Shimojo
  • Patent number: 8115364
    Abstract: A permanent magnet power generator which, when used at an electric power generating facility such as a wind power plant, etc., would not be bulky and would not impede wind capture by a wind turbine; instead, it can raise the generated voltage without impeding wind capture has a generator shaft; at least three rotors, which are secured with the generator shaft, constituted by a plurality of plate-shaped structures having a permanent magnet attached thereto, and each disposed in the longitudinal direction of the generator shaft; and a stator, which is plate-shaped with a stator coil disposed in at least two gaps formed by the rotors, evenly-spaced apart from the generator shaft. The rotors and stators are disposed alternately in the longitudinal direction of the generator shaft, with a total of at least five stages. Also a wind power generator with a propeller on the shaft of this permanent magnet generator.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 14, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takehisa Minowa, Hideki Kobayashi, Koji Miyata
  • Patent number: 8075707
    Abstract: A method for preparing a rare earth permanent magnet material comprises the steps of disposing a powder on a surface of a sintered magnet body of R1aTbAcMd composition wherein R1 is a rare earth element inclusive of Sc and Y, T is Fe and/or Co, A is boron (B) and/or carbon (C), M is Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, or W, said powder comprising an oxide of R2, a fluoride of R3 or an oxyfluoride of R4 wherein R2, R3, and R4 are rare earth elements inclusive of Sc and Y and having an average particle size equal to or less than 100 ?m, heat treating the magnet body and the powder at a temperature equal to or below the sintering temperature of the magnet body for absorption treatment for causing R2, R3, and R4 in the powder to be absorbed in the magnet body, and repeating the absorption treatment at least two times.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 13, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Takehisa Minowa, Koichi Hirota
  • Publication number: 20110234038
    Abstract: A rotor adapted for a large permanent magnet rotating machine having high output and demagnetization resistance and the permanent magnet rotating machine are provided. More specifically, there is provided a rotor adapted for a permanent magnet rotating machine, the machine comprising the rotor and a stator disposed with a clearance from an outer peripheral face of the rotor and formed by winding a winding wire through a stator core having two or more slots, the rotor comprising one or more permanent magnets in each of two or more insertion holes, the insertion holes being formed in a circumferential direction in a rotor core, wherein a magnetic coercive force in a stator-side surface region of each of the permanent magnets is greater than that in an inner central portion by 300 kA/m or more, the inner central portion being an inner portion at a depth of at least 5 mm from every outer shape face of the permanent magnet.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 29, 2011
    Inventors: Hideki Kobayashi, Yuhito Doi, Takehisa Minowa
  • Patent number: 8025744
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: September 27, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 8012269
    Abstract: A rare earth permanent magnet material is based on an R—Fe—Co—B—Al—Cu system wherein R is at least one element selected from Nd, Pr, Dy, Tb, and Ho, 15 to 33% by weight of Nd being contained. At least two compounds selected from M-B, M-B—Cu and M-C compounds (wherein M is Ti, Zr or Hf) and an R oxide have precipitated within the alloy structure as grains having an average grain size of up to 5 ?m which are uniformly distributed in the alloy structure at intervals of up to 50 ?m.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: September 6, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenji Yamamoto, Koichi Hirota, Takehisa Minowa
  • Publication number: 20110210810
    Abstract: The invention provides a sintered Nd base magnet which is free of a decline of remanence, has a high coercive force, especially at the edges thereof, is unsusceptible to demagnetization even at high temperature, and is suited for use in permanent magnet rotary machines.
    Type: Application
    Filed: November 27, 2009
    Publication date: September 1, 2011
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Koji Miyata, Takehisa Minowa, Hajime Nakamura, Koichi Hirota, Masakatsu Honshima
  • Patent number: 7988795
    Abstract: An R-T-B—C rare earth sintered magnet (R?Ce, Pr, Nd, Tb, or Dy; T=Fe) is obtained by mixing an R-T-B—C magnet matrix alloy with an R fluoride and an R-rich R-T-B—C sintering aid alloy, followed by pulverization, compaction and sintering. The sintered structure consists of an R2T14B type crystal primary phase and a grain boundary phase. The grain boundary phase consists essentially of 40-98 vol % of R—O1-x—F1+2x and/or R—Fy, 1-50 vol % of R—O, R—O—C or R—C compound phase, 0.05-10 vol % of R-T phase, 0.05-20 vol % of B-rich phase or M-B2 phase (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W), and the balance of an R-rich phase.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 2, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koichi Hirota, Takehisa Minowa
  • Patent number: 7985303
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 26, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Publication number: 20110162504
    Abstract: A magnet holding jig comprises a platform and first and second holders disposed on opposite sides of the platform. The platform is provided with channels, the holders are comb-shaped to define digits and slits, the channels and the slits being aligned to define guide paths for permitting entry of a cutting tool therein, and the holders are also configured as digitate hooks. The holder hooks are in contact with a rare earth magnet block resting on the platform. The holders are pushed inward at their lower portions so as to elastically deform the digitate hook and move it backward and to bring the hook digits in pressure abutment with the magnet block, thereby holding the magnet block in place on the platform.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Yuhito Doi, Takehisa Minowa, Takayuki Hasegawa, Takaharu Yamaguchi, Koji Sato
  • Publication number: 20110165822
    Abstract: A magnet holding jig comprises a platform and first and second holders disposed on opposite sides of the platform. The platform is provided with channels, the holders are comb-shaped to define digits and slits, the channels and the slits being aligned to define guide paths for permitting entry of a cutting tool therein, and the holders are also configured as digitate hooks. The holder hooks are in contact with a rare earth magnet block resting on the platform. The holders are pushed inward at their lower portions so as to bring each hook digit of the second holder in pressure abutment with the magnet block at a higher level than each hook digit of the first holder for thereby holding the magnet block in place on the platform.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Yuhito Doi, Takehisa Minowa, Takayuki Hasegawa, Takaharu Yamaguchi, Koji Sato
  • Publication number: 20110150691
    Abstract: A method for preparing a rare earth permanent magnet material comprises the steps of: disposing a powder comprising one or more members selected from an oxide of R2, a fluoride of R3, and an oxyfluoride of R4 wherein R2, R3 and R4 each are one or more elements selected from among rare earth elements inclusive of Y and Sc on a sintered magnet form of a R1—Fe—B composition wherein R1 is one or more elements selected from among rare earth elements inclusive of Y and Sc, and then heat treating the magnet form and the powder at a temperature equal to or below the sintering temperature of the magnet in vacuum or in an inert gas. The result high performance, compact or thin permanent magnet has a high remanence and coercivity at a high productivity.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 23, 2011
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hajime Nakamura, Koichi Hirota, Takehisa Minowa
  • Patent number: 7955443
    Abstract: A permanent magnet material is prepared by covering an anisotropic sintered magnet body of formula: R1x(Fe1-yCoy)100-x-z-aBzMa wherein R1 is a rare earth element, M is Al, Cu or the like, with a powder comprising an oxide of R2, a fluoride of R3 or an oxyfluoride of R4 wherein R2, R3, and R4 are rare earth elements, and having an average particle size up to 100 ?m, heat treating the powder-covered magnet body in a hydrogen gas-containing atmosphere for inducing disproportionation reaction on R12Fe14B compound, and continuing heat treatment at a reduced hydrogen gas partial pressure for inducing recombination reaction to said compound, thereby finely dividing said compound phase to a crystal grain size up to 1 ?m, and for effecting absorption treatment, thereby causing R2, R3 or R4 to be absorbed in the magnet body.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 7, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hajime Nakamura, Takehisa Minowa, Koichi Hirota
  • Patent number: 7948135
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 24, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa