Patents by Inventor Takehisa Minowa

Takehisa Minowa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8823235
    Abstract: An axial gap-type permanent magnetic rotating machine comprises a rotor comprising a rotating shaft having an axis of rotation, a rotor yoke of disc shape radially extending from the shaft, and a plurality of permanent magnet segments circumferentially arranged on a surface of the rotor yoke such that each permanent magnet segment may have a magnetization direction parallel to the axis of rotation, and a stator having a plurality of circumferentially arranged coils and disposed to define an axial gap with the rotor. In the rotor, each permanent magnet segment is an assembly of two or more divided permanent magnet pieces, and the coercive force near the surface of the magnet piece is higher than that in the interior of the magnet piece.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 2, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naoki Watanabe, Yuhito Doi, Takehisa Minowa, Hajime Nakamura, Koichi Hirota
  • Patent number: 8820729
    Abstract: When a rare earth magnet block is cut or ground by a cutting or grinding tool, a jig is used for holding the magnet block in place. The jig comprises a base, a pair of metal support members disposed on opposite sides of the base and provided with grooves, and rubber rods received in the support member grooves such that the rubber rod partially protrudes from the groove and abuts on the groove bottom. The magnet block is rested on the base and clamped between the rubber rods. The volume of the groove is larger than the volume of the rubber rod.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 2, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Takayuki Hasegawa, Takaharu Yamaguchi, Takehisa Minowa
  • Patent number: 8802040
    Abstract: A target light rare earth element is separated from an aqueous solution containing two or more of La, Ce, Pr and Nd by contacting an organic phase containing an extractant with the aqueous solution in a counter-current flow multistage mixer-settler while adding an alkaline solution thereto, and contacting the organic phase with an acid aqueous solution for back-extracting the target element. The extractant is a dialkyl diglycol amic acid having formula: R1R2NCOCH2OCH2COOH wherein R1 and R2 are alkyl, at least one having at least 6 carbon atoms.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 12, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroto Sugahara, Kazuaki Sakaki, Takehisa Minowa
  • Publication number: 20140208663
    Abstract: In an outer blade cutting wheel comprising an annular thin disc base of cemented carbide having an outer diameter of 80-200 mm, an inner diameter of 30-80 mm, and a thickness of 0.1-1.0 mm, and a blade section disposed on an outer periphery of the base, the blade section comprises diamond grains and/or CBN grains bound with a metal bond having a Young's modulus of 0.7-4.0×1011 Pa and has a thickness which is greater than the thickness of the base by at least 0.01 mm. The outer blade cutting wheel is capable of cutting a workpiece at a high accuracy and a reduced allowance, improves machining yields, and reduces machining costs.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masaki Kasashima, Takehisa Minowa, Takaharu Yamaguchi, Koji Sato
  • Publication number: 20140175968
    Abstract: In a yttrium-cerium-aluminum garnet phosphor having a crystallographic texture, nanocrystalline grains having a grain size of 5-20 nm and containing cerium in a higher concentration than the matrix phase are dispersed in the crystallographic texture. The emission color of the phosphor is shifted to the longer wavelength side. The phosphor can maintain its satisfactory emission performance even at high temperature.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kazuhiro Wataya, Toshihiko Tsukatani, Hirofumi Kawazoe, Takehisa Minowa
  • Patent number: 8756793
    Abstract: An interior permanent magnet (IPM) rotary machine comprises a rotor comprising a rotor yoke having bores and a plurality of permanent magnet segments disposed in the bores of the rotor yoke, each permanent magnet segment consisting of a plurality of magnet pieces. The rotor is assembled by inserting the plurality of unbound magnet pieces in each bore for stacking the magnet pieces, and fixedly securing the stacked magnet pieces in the bore.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: June 24, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Takehisa Minowa, Hajime Nakamura, Koichi Hirota
  • Publication number: 20140167895
    Abstract: A sintered Nd base magnet segment has a coercive force high at the periphery and lower toward the inside. A method for preparing the magnet includes the steps of: (a) providing a sintered Nd base magnet block having surfaces and a magnetization direction, (b) coating the surfaces of the magnet block excluding the surface perpendicular to the magnetization direction with a Dy or Tb oxide powder, a Dy or Tb fluoride powder, or a Dy or Tb-containing alloy powder, (c) treating the coated block at a high temperature for causing Dy or Tb to diffuse into the block, and (d) cutting the block in a plane perpendicular to the magnetization direction into a magnet segment having a coercive force distribution on the cut section that the coercive force is high at the periphery and lower toward the inside and a constant coercive force distribution in the magnetization direction.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Koji Miyata, Takehisa Minowa, Hajime Nakamura, Koichi Hirota, Masakatsu Honshima
  • Patent number: 8753174
    Abstract: In a method for multiple cutoff machining a rare earth magnet block, a cutting fluid feed nozzle having a plurality of slits is combined with a plurality of cutoff abrasive blades coaxially mounted on a rotating shaft, each said blade comprising a base disk and a peripheral cutting part. The slits in the feed nozzle into which the outer peripheral portions of cutoff abrasive blades are inserted serve to restrict any axial run-out of the cutoff abrasive blades during rotation. Cutting fluid is fed from the feed nozzle through slits to the rotating cutoff abrasive blades and eventually to points of cutoff machining on the magnet block.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: June 17, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Takehisa Minowa, Takaharu Yamaguchi, Takayuki Hasegawa, Kazuhito Akada
  • Patent number: 8753412
    Abstract: An outer blade cutting wheel comprising an annular thin disc base of cemented carbide and a blade section is manufactured by disposing permanent magnet pieces on the side surfaces and inward of the outer periphery of the base to produce a magnetic field, providing magnetic coated diamond and/or CBN abrasive grains such that the magnetic field may act on the grains, causing the grains to be magnetically attracted to the base outer periphery, and electroplating or electroless plating whereby the abrasive grains are bound to the base outer periphery to form the blade section.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: June 17, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masaki Kasashima, Yuhito Doi, Harukazu Maegawa, Takehisa Minowa
  • Patent number: 8733336
    Abstract: In an outer blade cutting wheel comprising an annular thin disc base of cemented carbide having an outer diameter of 80-200 mm, an inner diameter of 30-80 mm, and a thickness of 0.1-1.0 mm, and a blade section disposed on an outer periphery of the base, the blade section comprises diamond grains and/or CBN grains bound with a metal bond having a Young's modulus of 0.7-4.0×1011 Pa and has a thickness which is greater than the thickness of the base by at least 0.01 mm. The outer blade cutting wheel is capable of cutting a workpiece at a high accuracy and a reduced allowance, improves machining yields, and reduces machining costs.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: May 27, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masaki Kasashima, Takehisa Minowa, Takaharu Yamaguchi, Koji Sato
  • Patent number: 8702083
    Abstract: A magnet holding jig comprises a platform and first and second holders disposed on opposite sides of the platform. The platform is provided with channels, the holders are comb-shaped to define digits and slits, the channels and the slits being aligned to define guide paths for permitting entry of a cutting tool therein, and the holders are also configured as digitate hooks. The holder hooks are in contact with a rare earth magnet block resting on the platform. The holders are pushed inward at their lower portions so as to elastically deform the digitate hook and move it backward and to bring the hook digits in pressure abutment with the magnet block, thereby holding the magnet block in place on the platform.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 22, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Takehisa Minowa, Takayuki Hasegawa, Takaharu Yamaguchi, Koji Sato
  • Patent number: 8702084
    Abstract: A magnet holding jig comprises a platform and first and second holders disposed on opposite sides of the platform. The platform is provided with channels, the holders are comb-shaped to define digits and slits, the channels and the slits being aligned to define guide paths for permitting entry of a cutting tool therein, and the holders are also configured as digitate hooks. The holder hooks are in contact with a rare earth magnet block resting on the platform. The holders are pushed inward at their lower portions so as to bring each hook digit of the second holder in pressure abutment with the magnet block at a higher level than each hook digit of the first holder for thereby holding the magnet block in place on the platform.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: April 22, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuhito Doi, Takehisa Minowa, Takayuki Hasegawa, Takaharu Yamaguchi, Koji Sato
  • Patent number: 8695210
    Abstract: A method for preparing the magnet includes the steps of: (a) providing a sintered Nd base magnet block having surfaces and a magnetization direction, (b) coating the surfaces of the magnet block excluding the surface perpendicular to the magnetization direction with a Dy or Tb oxide powder, a Dy or Tb fluoride powder, or a Dy or Tb-containing alloy powder, (c) treating the coated block at a high temperature for causing Dy or Tb to diffuse into the block, and (d) cutting the block in a plane perpendicular to the magnetization direction into a magnet segment having a coercive force distribution on the cut section that the coercive force is high at the periphery and lower toward the inside and a constant coercive force distribution in the magnetization direction.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: April 15, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Miyata, Takehisa Minowa, Hajime Nakamura, Koichi Hirota, Masakatsu Honshima
  • Patent number: 8697284
    Abstract: A negative electrode material is provided for lithium ion batteries offering a high capacity and a long cycle life. It is an alloy material consisting essentially of Si, Al, M1, and M2 wherein M1 is a transition metal, and M2 is a metal element of Groups 4 and 5, and having an Si—Al-M1-M2 alloy phase constituting fine crystal grains and an Si phase precipitating along crystal grain boundaries to form a network.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 15, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Naofumi Shinya, Takehisa Minowa
  • Publication number: 20140065485
    Abstract: A complex alloy of at least three phases comprising a composite alloy composed of an Si single phase and an Si—Al-M alloy phase, and an L phase offers a negative electrode material. M is an element selected from transition metals and metals of Groups 4 and 5, and L is In, Sn, Sb, Pb or Mg. The negative electrode material provides a lithium ion battery with a high capacity and long life. The material itself is highly conductive and increases the energy density per volume of a lithium ion battery.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Naofumi Shinya, Takehisa Minowa
  • Patent number: 8638017
    Abstract: In connection with a permanent magnet rotary machine comprising a rotor comprising a rotor core and a plurality of permanent magnet segments embedded in the rotor core and a stator comprising a stator core having a plurality of slots and windings therein, the rotor and the stator being disposed to define a gap therebetween, or a permanent magnet rotary machine comprising a rotor comprising a rotor core and a plurality of permanent magnet segments mounted on the surface of the rotor core and a stator comprising a stator core having a plurality of slots and windings therein, the rotor and the stator being disposed to define a gap therebetween, the rotor wherein each of the permanent magnet segments is an assembly of further divided permanent magnet pieces, and the coercive force near the surface of the magnet piece is higher than that in the interior of the magnet piece.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: January 28, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takehisa Minowa, Hajime Nakamura, Koichi Hirota, Minori Miyata, Atsushi Miyata
  • Patent number: 8568203
    Abstract: In a method for multiple cutoff machining a rare earth magnet block, a cutting fluid feed nozzle having a plurality of slits is combined with a plurality of cutoff abrasive blades coaxially mounted on a rotating shaft, each said blade comprising a base disk and a peripheral cutting part. The slits in the feed nozzle into which the outer peripheral portions of cutoff abrasive blades are inserted serve to restrict any axial run-out of the cutoff abrasive blades during rotation. Cutting fluid is fed from the feed nozzle through slits to the rotating cutoff abrasive blades and eventually to points of cutoff machining on the magnet block.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 29, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Takehisa Minowa, Takaharu Yamaguchi, Takayuki Hasegawa, Kazuhito Akada
  • Patent number: 8567383
    Abstract: In a method for multiple cutoff machining a rare earth magnet block, a cutting fluid feed nozzle having a plurality of slits is combined with a plurality of cutoff abrasive blades coaxially mounted on a rotating shaft, each said blade comprising a base disk and a peripheral cutting part. The slits in the feed nozzle into which the outer peripheral portions of cutoff abrasive blades are inserted serve to restrict any axial run-out of the cutoff abrasive blades during rotation. Cutting fluid is fed from the feed nozzle through slits to the rotating cutoff abrasive blades and eventually to points of cutoff machining on the magnet block.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: October 29, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Takehisa Minowa, Takaharu Yamaguchi, Takayuki Hasegawa, Kazuhito Akada
  • Patent number: 8557057
    Abstract: A rare earth permanent magnet is prepared by disposing a powdered metal alloy containing at least 70 vol % of an intermetallic compound phase on a sintered body of R—Fe—B system, and heating the sintered body having the powder disposed on its surface below the sintering temperature of the sintered body in vacuum or in an inert gas for diffusion treatment. The advantages include efficient productivity, excellent magnetic performance, a minimal or zero amount of Tb or Dy used, an increased coercive force, and a minimized decline of remanence.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: October 15, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Publication number: 20130252521
    Abstract: The disclosed cemented carbide base outer blade cutting wheel comprises a base in the form of an annular thin disc of cemented carbide, and a blade section on the outer periphery of the base. The blade section contains: diamond and/or CBN abrasive grains pre-coated with a magnetic material; a metal or alloy bond formed by electroplating or electroless plating for bonding abrasive grains together and to the base; a resin infiltrated between abrasive grains and between abrasive grains and the base, said resin being a thermoplastic resin having a melting point of up to 350° C. or a thermoset resin obtained by curing a liquid thermosetting resin composition having a curing temperature of up to 350° C. The method for manufacturing said outer blade cutting wheel is also disclosed.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 26, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masaki Kasashima, Takehisa Minowa, Harukazu Maegawa, Yoshifumi Nagasaki