Patents by Inventor Takeo Toba

Takeo Toba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180197850
    Abstract: A semiconductor integrated circuit device with a “PAD on I/O cell” structure in which a pad lead part is disposed almost in the center of an I/O part so as to reduce the chip layout area. In the I/O part, a transistor lies nearest to the periphery of the semiconductor chip. When seen in a plan view of the I/O part, a resistance lies above the transistor and a first and a second diode lie above the resistance; a second transistor lies above the diodes; and a logic block lies above the second transistor with a pad lead part, for example, formed in a metal wiring layer, therebetween. This permits the pad through the second transistor to be on the same node and therefore the pad lead part can be disposed almost in the center of the I/O part.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 12, 2018
    Inventors: Takeo TOBA, Kazuo TANAKA, Hiroyasu ISHIZUKA
  • Patent number: 9947651
    Abstract: A semiconductor integrated circuit device with a “PAD on I/O cell” structure in which a pad lead part is disposed almost in the center of an I/O part so as to reduce the chip layout area. In the I/O part, a transistor lies nearest to the periphery of the semiconductor chip. When seen in a plan view of the I/O part, a resistance lies above the transistor and a first and a second diode lie above the resistance; a second transistor lies above the diodes; and a logic block lies above the second transistor with a pad lead part, for example, formed in a metal wiring layer, therebetween. This permits the pad through the second transistor to be on the same node and therefore the pad lead part can be disposed almost in the center of the I/O part.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 17, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Takeo Toba, Kazuo Tanaka, Hiroyasu Ishizuka
  • Publication number: 20160071572
    Abstract: An output signal characteristic of a differential amplifier circuit is improved. When an input data signal becomes ‘Low’, current flowing through a first transistor will decrease and potential at a connection (a node) between a first resistor and a second resistor will increase. This potential is input (negatively fed back) to the gate of a second transistor, and because this gate potential increases, a tail current amount is adjusted in an increasing direction. When the input data signal becomes ‘High’, the current of the first transistor increases and thus the potential at the node decreases. Thus, the gate potential (negative feedback) of the second transistor decreases, and the tail current amount is adjusted in a decreasing direction. Thus, in the rising and falling of an input waveform, the difference in a delay time with respect to the output waveform decreases, respectively.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Natsuki IKEHATA, Kazuo TANAKA, Takeo TOBA, Masashi ARAKAWA
  • Patent number: 9214217
    Abstract: An output signal characteristic of a differential amplifier circuit is improved. When an input data signal becomes ‘Low’, current flowing through a first transistor will decrease and potential at a connection (a node) between a first resistor and a second resistor will increase. This potential is input (negatively fed back) to the gate of a second transistor, and because this gate potential increases, a tail current amount is adjusted in an increasing direction. When the input data signal becomes ‘High’, the current of the first transistor increases and thus the potential at the node decreases. Thus, the gate potential (negative feedback) of the second transistor decreases, and the tail current amount is adjusted in a decreasing direction. Thus, in the rising and falling of an input waveform, the difference in a delay time with respect to the output waveform decreases, respectively.
    Type: Grant
    Filed: August 3, 2014
    Date of Patent: December 15, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Natsuki Ikehata, Kazuo Tanaka, Takeo Toba, Masashi Arakawa
  • Publication number: 20140334240
    Abstract: An output signal characteristic of a differential amplifier circuit is improved. When an input data signal becomes ‘Low’, current flowing through a first transistor will decrease and potential at a connection (a node) between a first resistor and a second resistor will increase. This potential is input (negatively fed back) to the gate of a second transistor, and because this gate potential increases, a tail current amount is adjusted in an increasing direction. When the input data signal becomes ‘High’, the current of the first transistor increases and thus the potential at the node decreases. Thus, the gate potential (negative feedback) of the second transistor decreases, and the tail current amount is adjusted in a decreasing direction. Thus, in the rising and falling of an input waveform, the difference in a delay time with respect to the output waveform decreases, respectively.
    Type: Application
    Filed: August 3, 2014
    Publication date: November 13, 2014
    Inventors: Natsuki Ikehata, Kazuo Tanaka, Takeo Toba, Masashi Arakawa
  • Patent number: 8803610
    Abstract: An output signal characteristic of a differential amplifier circuit is improved. When an input data signal becomes ‘Low’, current flowing through a first transistor will decrease and potential at a connection (a node) between a first resistor and a second resistor will increase. This potential is input (negatively fed back) to the gate of a second transistor, and because this gate potential increases, a tail current amount is adjusted in an increasing direction. When the input data signal becomes ‘High’, the current of the first transistor increases and thus the potential at the node decreases. Thus, the gate potential (negative feedback) of the second transistor decreases, and the tail current amount is adjusted in a decreasing direction. Thus, in the rising and falling of an input waveform, the difference in a delay time with respect to the output waveform decreases, respectively.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: August 12, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Natsuki Ikehata, Kazuo Tanaka, Takeo Toba, Masashi Arakawa
  • Publication number: 20130264647
    Abstract: A semiconductor integrated circuit device with a “PAD on I/O cell” structure in which a pad lead part is disposed almost in the center of an I/O part so as to reduce the chip layout area. In the I/O part, a transistor lies nearest to the periphery of the semiconductor chip. When seen in a plan view of the I/O part, a resistance lies above the transistor and a first and a second diode lie above the resistance; a second transistor lies above the diodes; and a logic block lies above the second transistor with a pad lead part, for example, formed in a metal wiring layer, therebetween. This permits the pad through the second transistor to be on the same node and therefore the pad lead part can be disposed almost in the center of the I/O part.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Takeo TOBA, Kazuo TANAKA, Hiroyasu ISHIZUKA
  • Publication number: 20130049864
    Abstract: An output signal characteristic of a differential amplifier circuit is improved. When an input data signal becomes ‘Low’, current flowing through a first transistor will decrease and potential at a connection (a node) between a first resistor and a second resistor will increase. This potential is input (negatively fed back) to the gate of a second transistor, and because this gate potential increases, a tail current amount is adjusted in an increasing direction. When the input data signal becomes ‘High’, the current of the first transistor increases and thus the potential at the node decreases. Thus, the gate potential (negative feedback) of the second transistor decreases, and the tail current amount is adjusted in a decreasing direction. Thus, in the rising and falling of an input waveform, the difference in a delay time with respect to the output waveform decreases, respectively.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 28, 2013
    Inventors: Natsuki IKEHATA, Kazuo Tanaka, Takeo Toba, Masashi Arakawa
  • Patent number: 8013656
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuko Kanno, Kazuo Tanaka, Shunsuke Toyoshima, Takeo Toba
  • Publication number: 20110057708
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yusuko KANNO, Kazuo TANAKA, Shunsuke TOYOSHIMA, Takeo TOBA
  • Patent number: 7855590
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: December 21, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Yusuke Kanno, Kazuo Tanaka, Shunsuke Toyoshima, Takeo Toba
  • Publication number: 20100155845
    Abstract: A semiconductor integrated circuit device with a “PAD on I/O cell” structure in which a pad lead part is disposed almost in the center of an I/O part so as to reduce the chip layout area. In the I/O part, a transistor lies nearest to the periphery of the semiconductor chip. When seen in a plan view of the I/O part, a resistance lies above the transistor and a first and a second diode lie above the resistance; a second transistor lies above the diodes; and a logic block lies above the second transistor with a pad lead part, for example, formed in a metal wiring layer, therebetween. This permits the pad through the second transistor to be on the same node and therefore the pad lead part can be disposed almost in the center of the I/O part.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Inventors: Takeo Toba, Kazuo Tanaka, Hiroyasu Ishizuka
  • Publication number: 20090195292
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Application
    Filed: April 13, 2009
    Publication date: August 6, 2009
    Inventors: Yusuke Kanno, Kazuo Tanaka, Shunsuke Toyoshima, Takeo Toba
  • Patent number: 7532054
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: May 12, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Yusuke Kanno, Kazuo Tanaka, Shunsuke Toyoshima, Takeo Toba
  • Patent number: 7425845
    Abstract: The present invention provides a semiconductor integrated circuit having two kinds of input/output circuits realizing higher speed and higher packing density with rational configuration. The semiconductor integrated circuit has a first input/output circuit operating on a first power source voltage, an internal circuit operating on a second power source voltage lower than the first power source voltage, and a second input/output circuit operating on a third power source voltage lower than the first power source voltage. In an output circuit of the first input/output circuit, signal amplitude corresponding to the second power source voltage is converted to signal amplitude corresponding to the first power source voltage by a level shifter, and a P-channel MOSFET and an N-channel MOSFET constructing the output circuit are driven.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: September 16, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Takeo Toba, Kazuo Tanaka, Shunsuke Toyoshima
  • Publication number: 20070019493
    Abstract: The present invention provides a semiconductor integrated circuit having two kinds of input/output circuits realizing higher speed and higher packing density with rational configuration. The semiconductor integrated circuit has a first input/output circuit operating on a first power source voltage, an internal circuit operating on a second power source voltage lower than the first power source voltage, and a second input/output circuit operating on a third power source voltage lower than the first power source voltage. In an output circuit of the first input/output circuit, signal amplitude corresponding to the second power source voltage is converted to signal amplitude corresponding to the first power source voltage by a level shifter, and a P-channel MOSFET and an N-channel MOSFET constructing the output circuit are driven.
    Type: Application
    Filed: June 14, 2006
    Publication date: January 25, 2007
    Inventors: Takeo Toba, Kazuo Tanaka, Shunsuke Toyoshima
  • Publication number: 20060232307
    Abstract: A semiconductor integrated circuit device including an I/O circuitry capable of low-voltage high-speed operation at low cost is provided. In the I/O circuitry, when an I/O voltage (for example, 3.3 V) is lowered to a predetermined voltage (for example, 1.8 V), portions causing a speed deterioration are a level conversion unit and a pre-buffer unit for driving a main large-sized buffer. In view of this, a high voltage is applied to a level up converter and a pre-buffer circuit. By doing so, it is possible to achieve an I/O circuitry capable of low-voltage high-speed operation at low cost.
    Type: Application
    Filed: April 18, 2006
    Publication date: October 19, 2006
    Inventors: Yusuke Kanno, Kazuo Tanaka, Shunsuke Toyoshima, Takeo Toba