Patents by Inventor Takeshi Ishiguro

Takeshi Ishiguro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9461109
    Abstract: A method of forming a superjunction device includes providing a semiconductor layer having first and second opposing main surfaces and a first doping concentration of a dopant of a first conductivity type, forming at least one device proximate the first main surface, forming at least one trench adjacent to the device and extending into the semiconductor layer from the first main surface, doping at least a portion of a sidewall of the trench with a dopant of a second, different conductivity type to form a first region in the semiconductor layer adjacent to the sidewall and extending at least partially between the first and second main surfaces, providing a substrate with a first dielectric layer arranged thereon, bonding the first dielectric layer to the first main surface to cover the trench and at least a portion of the device, and removing the substrate.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: October 4, 2016
    Assignee: Icemos Technology, Ltd.
    Inventors: Takeshi Ishiguro, Samuel Anderson
  • Publication number: 20160268367
    Abstract: A method of forming a superjunction device includes providing a semiconductor layer having first and second opposing main surfaces and a first doping concentration of a dopant of a first conductivity type, forming at least one device proximate the first main surface, forming at least one trench adjacent to the device and extending into the semiconductor layer from the first main surface, doping at least a portion of a sidewall of the trench with a dopant of a second, different conductivity type to form a first region in the semiconductor layer adjacent to the sidewall and extending at least partially between the first and second main surfaces, providing a substrate with a first dielectric layer arranged thereon, bonding the first dielectric layer to the first main surface to cover the trench and at least a portion of the device, and removing the substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: September 15, 2016
    Inventors: Takeshi ISHIGURO, Samuel ANDERSON
  • Publication number: 20160163787
    Abstract: A semiconductor chip includes a semiconductor layer having first and second opposing main surfaces. A plurality of MOSFET cells are at least partially formed in the semiconductor layer. A gate pad region is at least partially formed in the semiconductor layer and includes a gate pad contact and a first plurality of trenches extending from the first main surface. The first plurality of trenches are spaced apart from one another in a direction parallel to the first main surface by about 45 micrometers to about 60 micrometers. At least one gate feed region is at least partially formed in the semiconductor layer and includes a gate feed contact and a second plurality of trenches extending from the first main surface. The second plurality of trenches are spaced apart from one another in the direction parallel to the first main surface by about 45 micrometers to about 60 micrometers.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: Kenji SUGIURA, Takeshi ISHIGURO
  • Patent number: 9349725
    Abstract: A semiconductor device includes a semiconductor layer having first and second main surfaces, with the first surface defining a plane containing first and second perpendicular axes. A first gate is disposed proximate the first main surface and extends parallel to the first axis. A dielectric layer is formed on the first main surface and separates the first gate from the first main surface. First and second trenches are formed in the semiconductor layer proximate the first gate and spaced apart in a direction parallel to the first axis. First and second pluralities of contact windows are formed in the dielectric layer to expose the first main surface and are respectively arranged in first and second rows extending between the first and second trenches in a direction parallel to the first axis. Adjacent contact windows in each first row are separated only by the dielectric layer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 24, 2016
    Inventors: Kenji Sugiura, Takeshi Ishiguro
  • Patent number: 9147751
    Abstract: Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: September 29, 2015
    Assignee: Icemos Technology Ltd
    Inventors: Samuel Anderson, Takeshi Ishiguro
  • Publication number: 20150111354
    Abstract: Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Samuel ANDERSON, Takeshi ISHIGURO
  • Patent number: 8963239
    Abstract: A superjunction device includes a substrate having first and second main surfaces and a first doping concentration of a first dopant. A first semiconductor layer having a second doping concentration of the first dopant is formed on the substrate. A second semiconductor layer is formed on the first layer and has a main surface. At least one trench extends from the main surface at least partially into the first semiconductor layer. A first region having a third doping concentration of the first dopant extends at least partially between the main surface and the first layer. A second region having a fourth doping concentration of a second dopant is disposed between the first region and a trench sidewall and extends at least partially between the main surface and the first layer. A third region having a fifth doping concentration of the first dopant is disposed proximate the main surface.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 24, 2015
    Assignee: Icemos Technology, Ltd.
    Inventors: Samuel Anderson, Takeshi Ishiguro, Kenji Sugiura
  • Patent number: 8946814
    Abstract: Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Takeshi Ishiguro
  • Publication number: 20140264620
    Abstract: A semiconductor device includes a semiconductor layer having first and second main surfaces, with the first surface defining a plane containing first and second perpendicular axes. A first gate is disposed proximate the first main surface and extends parallel to the first axis. A dielectric layer is formed on the first main surface and separates the first gate from the first main surface. First and second trenches are formed in the semiconductor layer proximate the first gate and spaced apart in a direction parallel to the first axis. First and second pluralities of contact windows are formed in the dielectric layer to expose the first main surface and are respectively arranged in first and second rows extending between the first and second trenches in a direction parallel to the first axis. Adjacent contact windows in each first row are separated only by the dielectric layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Icemos Technology Ltd.
    Inventors: Kenji SUGIURA, Takeshi ISHIGURO
  • Publication number: 20140264582
    Abstract: A superjunction device includes a substrate having first and second main surfaces and a first doping concentration of a first dopant. A first semiconductor layer having a second doping concentration of the first dopant is formed on the substrate. A second semiconductor layer is formed on the first layer and has a main surface. At least one trench extends from the main surface at least partially into the first semiconductor layer. A first region having a third doping concentration of the first dopant extends at least partially between the main surface and the first layer. A second region having a fourth doping concentration of a second dopant is disposed between the first region and a trench sidewall and extends at least partially between the main surface and the first layer. A third region having a fifth doping concentration of the first dopant is disposed proximate the main surface.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: ICEMOS TECHNOLOGY LTD.
    Inventors: Samuel ANDERSON, Takeshi ISHIGURO, Kenji SUGIURA
  • Publication number: 20140264619
    Abstract: A semiconductor chip includes a semiconductor layer having first and second opposing main surfaces. A plurality of MOSFET cells are at least partially formed in the semiconductor layer. A gate pad region is at least partially formed in the semiconductor layer and includes a gate pad contact and a first plurality of trenches extending from the first main surface. The first plurality of trenches are spaced apart from one another in a direction parallel to the first main surface by about 45 micrometers to about 60 micrometers. At least one gate feed region is at least partially formed in the semiconductor layer and includes a gate feed contact and a second plurality of trenches extending from the first main surface. The second plurality of trenches are spaced apart from one another in the direction parallel to the first main surface by about 45 micrometers to about 60 micrometers.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Michael W. Shore
    Inventors: Kenji SUGIURA, Takeshi ISHIGURO
  • Patent number: 8580651
    Abstract: Methods for manufacturing trench type semiconductor devices involve refilling the trenches after high temperature processing steps are performed. The methods allow thermally unstable materials to be used as refill materials for the trenches of the device. Trench type semiconductor devices containing thermally unstable refill materials are also provided. In particular, methods of manufacturing and devices of a trench type semiconductor devices containing organic refill materials are provided.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 12, 2013
    Assignee: Icemos Technology Ltd.
    Inventor: Takeshi Ishiguro
  • Patent number: 8158004
    Abstract: Provided is a method of manufacturing target substances with use of supercritical fluid chromatography, by which the following are achieved: solution of a problem at the time of sequential injections of samples containing the target substances; an increase of a treatment amount of separation per unit time; and improvement of efficiency in separation. The method includes the steps of: injecting the sample containing the target substances into a mobile phase; and returning composition of the mobile phase to a pre-change state after changing the composition of the mobile phase. The step of returning the composition of the mobile phase to the pre-change state after changing the composition of the mobile phase is performed during a period of time from detection of a peak of one of the target substances which is eluted latest from a column among the target substances separated by the supercritical fluid chromatography apparatus to injection of the next sample, whereby the problem is solved.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 17, 2012
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Kenichiro Miyazawa, Takeshi Ishiguro
  • Patent number: 8114751
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 14, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Takeshi Ishiguro, Hugh J. Griffin, Kenji Sugiura
  • Publication number: 20120006750
    Abstract: Provided is a method of manufacturing target substances with use of supercritical fluid chromatography, by which the following are achieved: solution of a problem at the time of sequential injections of samples containing the target substances; an increase of a treatment amount of separation per unit time; and improvement of efficiency in separation. The method includes the steps of: injecting the sample containing the target substances into a mobile phase; and returning composition of the mobile phase to a pre-change state after changing the composition of the mobile phase. The step of returning the composition of the mobile phase to the pre-change state after changing the composition of the mobile phase is performed during a period of time from detection of a peak of one of the target substances which is eluted latest from a column among the target substances separated by the supercritical fluid chromatography apparatus to injection of the next sample, whereby the problem is solved.
    Type: Application
    Filed: October 22, 2009
    Publication date: January 12, 2012
    Inventors: Kenichiro Miyazawa, Takeshi Ishiguro
  • Publication number: 20110254137
    Abstract: A method of manufacturing a superjunction device includes providing a semiconductor wafer having at least one die. At least one first trench having a first orientation is formed in the at least one die. At least one second trench having a second orientation that is different from the first orientation is formed in the at least one die.
    Type: Application
    Filed: June 27, 2011
    Publication date: October 20, 2011
    Inventors: Takeshi Ishiguro, Kenji Sugiura, Hugh J. Griffin
  • Patent number: 8041850
    Abstract: A channel control unit of a storage apparatus is provided with: a variable-length DMA (Direct Memory Access) that performs data transfer of variable-length data sent to or received from the host computer in accordance with an I/O request; a fixed-length DMA that performs data transfer of fixed-length data to and from the cache memory; and a buffer intervening between the variable-length DMA and the fixed-length DMA. In performing the data transfer of the fixed-length data to the cache memory, the fixed-length DMA divides the variable-length data into multiple sets of the fixed-length data each having a data size equivalent to a unit size of data managed in the cache memory, and adds a first integrity code to the last fixed-length data set of the fixed-length data sets generated by the division, the first integrity code being generated based on the entire variable-length data.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: October 18, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Kasahara, Osamu Torigoe, Tetsuya Kojima, Takeshi Ishiguro
  • Patent number: 8012806
    Abstract: A method of manufacturing a superjunction device includes providing a semiconductor wafer having at least one die. At least one first trench having a first orientation is formed in the at least one die. At least one second trench having a second orientation that is different from the first orientation is formed in the at least one die.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: September 6, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Takeshi Ishiguro, Kenji Sugiura, Hugh J. Griffin
  • Publication number: 20110068440
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
    Type: Application
    Filed: October 28, 2010
    Publication date: March 24, 2011
    Applicant: Icemos Technology Ltd.
    Inventors: Takeshi Ishiguro, Hugh J. Griffin, Kenji Sugiura
  • Patent number: 7846821
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 7, 2010
    Assignee: Icemos Technology Ltd.
    Inventors: Takeshi Ishiguro, Hugh J. Griffin, Kenji Sugiura