Patents by Inventor Takeshi Toda

Takeshi Toda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240379023
    Abstract: An information processing apparatus includes a data acquisition unit that acquires data indicating a relationship between success or failure of a task and an amount of a loss-framed incentive indicating an incentive that is forfeited in a case where the task is not successful, and information indicating a motivation function representing motivation of a user for the task, a parameter determination unit that determines a parameter of the motivation function based on the data, and an incentive measure calculation unit that calculates an incentive measure indicating an amount of a loss-framed incentive based on the determined parameter and the motivation function.
    Type: Application
    Filed: September 17, 2021
    Publication date: November 14, 2024
    Inventors: Yuka NISHIDA, Hideaki KIN, Takeshi KURASHIMA, Hiroyuki TODA
  • Patent number: 12133358
    Abstract: A heat exchanger includes a plurality of fins that are spaced from each other and are arranged to divide a heat medium flow passage into a plurality of narrow passages. Each fin incudes a plurality of thick wall portions and a plurality of thin wall portions which are alternately arranged in a passage longitudinal direction. Each adjacent two of the plurality of fins, which are adjacent to each other, are defined as one fine and another fin, and each of the plurality of thick wall portions of the one fin is opposed to an adjacent one of the plurality of thin wall portions of the another fin in a fin arrangement direction, and each of the plurality of thin wall portions of the one fin is opposed to an adjacent one of the plurality of thick wall portions of the another fin in the fin arrangement direction.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: October 29, 2024
    Assignee: DENSO CORPORATION
    Inventors: Yuya Saito, Yuuki Suzuki, Yuusuke Toda, Takeshi Okinotani
  • Publication number: 20240299573
    Abstract: The present invention provides a novel antibody-pyrrolodiazepine derivative and a novel antibody-pyrrolodiazepine derivative conjugate using the same, and a novel CLDN6 and/or CLDN9 antibody.
    Type: Application
    Filed: April 8, 2024
    Publication date: September 12, 2024
    Applicant: DAIICHI SANKYO COMPANY, LIMITED
    Inventors: Narihiro TODA, Yusuke OTA, Fuminao DOI, Masaki MEGURO, Ichiro HAYAKAWA, Shinji ASHIDA, Takeshi MASUDA, Takashi NAKADA, Mitsuhiro IWAMOTO, Naoya HARADA, Tomoko TERAUCHI, Daisuke OKAJIMA, Kensuke NAKAMURA, Hiroaki UCHIDA, Hirofumi HAMADA
  • Patent number: 12056634
    Abstract: The present disclosure enables vehicle dispatch in consideration of individual differences of each orderer for a price and a required time by a computer executing an input procedure to input parameters for a distance matrix relating to a distance between a taxi and an orderer giving a taxi dispatch order, a travel distance for an order, an opportunity cost parameter for a taxi driver, and an acceptance probability function of the orderer, and a calculation procedure to calculate a price and a required time to be presented to the orderer by solving an optimization problem formulated using the parameters.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 6, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuya Hikima, Masahiro Kojima, Yasunori Akagi, Tatsushi Matsubayashi, Takeshi Kurashima, Hiroyuki Toda
  • Publication number: 20240248361
    Abstract: A display device comprising a transistor and a display element over the transistor, wherein the transistor includes a gate electrode on an insulating surface, a gate insulating layer on the gate electrode, and source/drain electrodes on the oxide semiconductor layer and the gate insulating layer, each including a first conductive layer containing nitrogen and a second conductive layer on the first conductive layer, and an insulating layer contains oxygen on the oxide semiconductor layer and the source/drain electrodes.
    Type: Application
    Filed: March 4, 2024
    Publication date: July 25, 2024
    Applicant: Japan Display Inc.
    Inventors: Masashi TSUBUKU, Takeshi SAKAI, Tatsuya TODA
  • Publication number: 20240242242
    Abstract: An incentive optimization method according to an embodiment provides an incentive optimization method for optimizing an incentive granting method for a behavior of an individual, the incentive optimization method including being executable on a computer and including: estimating a parameter of a model for each individual, the model using the incentive granting method as input and outputting a degree of achievement with respect to a target behavior, by using a sequence of the behavior and observation data of the incentive granting method with respect to the sequence; and calculating an incentive granting method that maximizes the degree of achievement using the model in which the estimated parameter is set.
    Type: Application
    Filed: May 13, 2021
    Publication date: July 18, 2024
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hideaki KIN, Takeshi KURASHIMA, Hiroyuki TODA
  • Publication number: 20230126475
    Abstract: A main object of the present disclosure is to provide a reflection-type optical encoder scale capable of sufficiently reducing the reflectance on a low reflection region. The present disclosure achieves the object by providing a reflection-type optical encoder scale comprising a high reflection region and a low reflection region alternately placed on a substrate, wherein the low reflection region includes a low reflection portion including a metallic chromium film formed on the substrate, and a chromium oxide film and a chromium nitride film randomly formed on the metallic chromium film; and the high reflection region has higher reflectance of incident light from opposite side to the substrate of the reflection-type optical encoder scale, than the low reflection region.
    Type: Application
    Filed: March 30, 2021
    Publication date: April 27, 2023
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventors: Shinsuke NAKAZAWA, Takeshi TODA, Naoya ODA
  • Patent number: 11526690
    Abstract: A learning device includes one or more processors. The processors generate a plurality of pieces of learning data to be used in a plurality of learning processes, respectively, to learn a parameter of a neural network using an objective function. The processors calculate a first partial gradient using a partial data and the parameter added with noise, with respect to at least a part of the learning data out of the plurality of pieces of learning data. The partial data is obtained by dividing the learning data. The first partial gradient is a gradient of the objective function relating to the parameter for the partial data. The noise is calculated based on a second partial gradient calculated for another piece of the learning data. The processors update the parameter using the first partial gradient.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 13, 2022
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Toda, Kosuke Haruki
  • Publication number: 20200234082
    Abstract: A learning device includes one or more processors. The processors generate a plurality of pieces of learning data to be used in a plurality of learning processes, respectively, to learn a parameter of a neural network using an objective function. The processors calculate a first partial gradient using a partial data and the parameter added with noise, with respect to at least a part of the learning data out of the plurality of pieces of learning data. The partial data is obtained by dividing the learning data. The first partial gradient is a gradient of the objective function relating to the parameter for the partial data. The noise is calculated based on a second partial gradient calculated for another piece of the learning data. The processors update the parameter using the first partial gradient.
    Type: Application
    Filed: August 28, 2019
    Publication date: July 23, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takeshi TODA, Kosuke HARUKI
  • Patent number: 10661701
    Abstract: A blade receives light emitted from a light source and repeats a predetermined periodic motion to scan the front of a vehicle with reflected light of the emitted light. A position detector generates a position detection signal S4 indicating a timing at which a predetermined reference point of the blade passes a predetermined position. Based on the position detection signal S4, a period calculator calculates a period Tp of the periodic motion of the blade. A light intensity calculator receives light-distribution-pattern information S3 to be formed in front of the vehicle and calculates light intensity to be generated by the light source at each time based on the position detection signal S4 and the period Tp. A driver turns on a semiconductor light source so as to obtain the light intensity calculated by the light intensity calculator at each time.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 26, 2020
    Assignee: KOITO MANUFACTURING CO., LTD.
    Inventors: Takeshi Toda, Kentarou Murakami, Masayasu Ito, Takao Muramatsu, Hidetada Tanaka, Satoshi Yamamura
  • Patent number: 10609774
    Abstract: A lighting circuit includes a voltage converter configured to receive a DC voltage to perform voltage conversion and supply a drive current to a light source unit including a light emitting element, a bypass switch configured to form a bypass path through which the drive current bypasses the light emitting element, and a controller configured to control the voltage converter and the bypass switch. The light source unit includes a plurality of light emitting elements connected in series. The bypass path includes at least one bypass switch which are connected in parallel with at least one of the light emitting elements. When turning on the light emitting element of the light source unit, the controller controls the voltage conversion to start in a state where the bypass switch is turned on, and then, turns off the bypass switch to turn on the light emitting element.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 31, 2020
    Assignee: KIOTO MANUFACTURING CO., LTD.
    Inventors: Toshiyuki Tsuchiya, Takao Muramatsu, Takeshi Toda
  • Publication number: 20190188563
    Abstract: According to one embodiment, in nth (n is a natural number) processing, a first node calculates a first gradient to update a first weight and a second node calculates a second gradient to update the first weight. In mth (m is a natural number) processing, a third node calculates a third gradient to update a third weight and a fourth node calculates a fourth gradient to update the third weight. If the calculation by the first and second nodes is faster than the calculation by the third and fourth nodes, in n+1th processing, a second weight updated from the first weight is further updated using the first and second gradients, and, in m+1th processing, a fourth weight updated from the third weight is further updated using the first to fourth gradients.
    Type: Application
    Filed: September 12, 2018
    Publication date: June 20, 2019
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi TODA, Kosuke HARUKI
  • Publication number: 20190008010
    Abstract: A lighting circuit includes a voltage converter configured to receive a DC voltage to perform voltage conversion and supply a drive current to a light source unit including a light emitting element, a bypass switch configured to form a bypass path through which the drive current bypasses the light emitting element, and a controller configured to control the voltage converter and the bypass switch. The light source unit includes a plurality of light emitting elements connected in series. The bypass path includes at least one bypass switch which are connected in parallel with at least one of the light emitting elements. When turning on the light emitting element of the light source unit, the controller controls the voltage conversion to start in a state where the bypass switch is turned on, and then, turns off the bypass switch to turn on the light emitting element.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 3, 2019
    Applicants: KOITO MANUFACTURING CO., LTD., KOITO MANUFACTURING CO., LTD.
    Inventors: Toshiyuki Tsuchiya, Takao Muramatsu, Takeshi Toda
  • Publication number: 20170282786
    Abstract: A blade receives light emitted from a light source and repeats a predetermined periodic motion to scan the front of a vehicle with reflected light of the emitted light. A position detector generates a position detection signal S4 indicating a timing at which a predetermined reference point of the blade passes a predetermined position. Based on the position detection signal S4, a period calculator calculates a period Tp of the periodic motion of the blade. A light intensity calculator receives light-distribution-pattern information S3 to be formed in front of the vehicle and calculates light intensity to be generated by the light source at each time based on the position detection signal S4 and the period Tp. A driver turns on a semiconductor light source so as to obtain the light intensity calculated by the light intensity calculator at each time.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Applicant: Koito Manufacturing Co., Ltd.
    Inventors: Takeshi TODA, Kentarou MURAKAMI, Masayasu ITO, Takao MURAMATSU, Hidetada TANAKA, Satoshi YAMAMURA
  • Patent number: 9450089
    Abstract: A decrease in resistance against an abnormal current of a semiconductor device is suppressed. A first transistor is sandwiched between two second transistors (a first one and a second one of the second transistors) in a second direction. Both of a distance between a second source contact and a second drain contact that are coupled to the one second transistor, and a distance between a second source contact and a second drain contact that are coupled to the other second transistor are larger than a distance between a second source contact and a second drain contact that are coupled to a third one of the second transistors located farthest from the first transistor in the second direction.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: September 20, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takeshi Toda, Mototsugu Okushima
  • Publication number: 20150214359
    Abstract: A decrease in resistance against an abnormal current of a semiconductor device is suppressed. A first transistor is sandwiched between two second transistors (a first one and a second one of the second transistors) in a second direction. Both of a distance between a second source contact and a second drain contact that are coupled to the one second transistor, and a distance between a second source contact and a second drain contact that are coupled to the other second transistor are larger than a distance between a second source contact and a second drain contact that are coupled to a third one of the second transistors located farthest from the first transistor in the second direction.
    Type: Application
    Filed: January 27, 2015
    Publication date: July 30, 2015
    Inventors: Takeshi Toda, Mototsugu Okushima
  • Publication number: 20140319591
    Abstract: In an interlayer insulating film in which contact plugs are embedded, a capacitor element is formed which has electrodes each formed of a metal. Over a substrate, the interlayer insulating film is formed. The interlayer insulating film includes a first insulating film and a second insulating film. In the second insulating film, the first and second contact plugs are formed. The first and second contact plugs extend through the second insulating film to reach first and second gate electrodes. In a surface of the substrate, an isolation film is formed. Within a region overlapping the isolation film in planar view, the capacitor element is formed. The capacitor element includes the lower and upper electrodes. Each of the lower and upper electrodes contains a metal. The lower and upper electrodes of the capacitor element are formed over the first insulating film to be embedded in the second insulating film.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 30, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Takeshi TODA
  • Patent number: 8803285
    Abstract: A semiconductor device has a capacitive structure formed by sequentially layering, on a wiring or conductive plug, a lower electrode, a capacitive insulation film, and an upper electrode. The semiconductor device has, as the capacitive structure, a thin-film capacitor having a lower electrode structure composed of an amorphous or microcrystalline film or a laminate of these films formed on a polycrystalline film.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 12, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroto Ohtake, Naoya Inoue, Ippei Kume, Takeshi Toda, Yoshihiro Hayashi
  • Patent number: 8743836
    Abstract: Provided is a radio communication method employed in a base station having plural antenna elements. The method includes the steps of: setting an inner zone and an outer zone by dividing a cell formed by the base station into two; determining whether a mobile station is located in the inner zone or the outer zone on the basis of a predetermined criterion; notifying the mobile station located in the inner zone of control information, including information on channel allocation and a communication method, through a broadcast channel; and notifying the mobile station located in the outer zone of control information through a dedicated channel by beamforming using the plural antenna elements.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: June 3, 2014
    Assignee: Kyocera Corporation
    Inventors: Takeshi Toda, Shingo Joko, Taku Nakayama, Kenta Okino
  • Patent number: 8565826
    Abstract: A radio base station 100 includes fading rate measurement units 103a to 103n configured to measure a fading rate of a radio signal for each of the antenna elements 101a to 101n, the radio signal being received through the antenna elements; and a reference signal calculator 105 configured to output a reference signal used in an adaptive control of the directivity of the array antenna 101. The reference signal calculator 105 outputs the reference signal on the basis of a plurality of fading rates measured by the fading rate measurement units 103a to 103n.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: October 22, 2013
    Assignee: Kyocera Corporation
    Inventors: Kenta Okino, Takeshi Toda, Chiharu Yamazaki