Patents by Inventor Takuya Hirata

Takuya Hirata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8377184
    Abstract: A CO2 recovery apparatus according to a first embodiment of the present invention includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that has absorbed the CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated absorbing liquid (lean solvent), having CO2 reduced in the regenerator, is reused in the CO2 absorber; a first compressor to a fourth compressor that compress the CO2 gas released from the regenerator; and an O2 reducing apparatus arranged between the second compressor and a second cooler to reduce O2 in the CO2 gas.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: February 19, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Keiji Fujikawa, Takuya Hirata, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Publication number: 20120318141
    Abstract: A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
    Type: Application
    Filed: January 11, 2011
    Publication date: December 20, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Takuya Hirata, Keiji Fujikawa, Tetsuya Imai, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Patent number: 8147593
    Abstract: An absorbing solution according to the present invention is an absorbing solution that absorbs CO2 or H2S in gas or both of CO2 and H2S. The absorbing solution is formed by adding desirably 1 to 20 weight percent of tertiary monoamine to a secondary-amine composite absorbent such as a mixture of secondary monoamine and secondary diamine. Consequently, it is possible to control degradation in absorbing solution amine due to oxygen or the like in gas. As a result, it is possible to realize a reduction in an absorption loss, prevention of malfunction, and a reduction in cost. This absorbing solution is suitably used in an apparatus for removing CO2 or H2S or both of CO2 and H2S.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: April 3, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Tomio Mimura, Yasuyuki Yagi, Kouki Ogura, Masaki Iijima, Toru Takashina, Hiroshi Tanaka, Takuya Hirata
  • Publication number: 20120014861
    Abstract: A CO2 recovery unit 10A according to a first embodiment has a CO2 absorber that removes CO2 in flue gas by bringing the flue gas containing CO2 into contact with a CO2 absorbent 12, and a regenerator 15 that diffuses CO2 in a rich solution 14 having absorbed CO2 in the CO2 absorber. The CO2 recovery unit 10A includes a first compressor 29-1 to a fourth compressor 29-4 that compress CO2 gas 16 discharged from the regenerator 15, a dehydrating column 33 that reduces moisture in the CO2 gas 16 by bringing the CO2 gas 16 into contact with a dehydrating agent 32, a combustion removal unit 41 that removes the dehydrating agent 32 mixed in the CO2 gas 16 in the dehydrating column 33, and a heat exchanger 42 that performs heat exchange between the CO2 gas 16 discharged from the third compressor 29-3 and the CO2 gas 16 discharged from the dehydrating column 33.
    Type: Application
    Filed: December 21, 2009
    Publication date: January 19, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Keiji Fujikawa, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Publication number: 20110158930
    Abstract: A method for treatment of a patient suffering from irritable bowel syndrome with diarrhea or mixed irritable bowel syndrome, which comprises administering to the patient a therapeutically effective amount of ramosetron or a pharmaceutically acceptable salt thereof in combination with a therapeutically effective amount of polycarbophil or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: August 27, 2009
    Publication date: June 30, 2011
    Applicant: ASTELLAS PHARMA INC.
    Inventors: Takuya Hirata, Toshiyuki Funatsu, Yoshihiro Keto, Shinobu Akuzawa
  • Publication number: 20110158891
    Abstract: To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. Means of Solution A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein.
    Type: Application
    Filed: October 8, 2010
    Publication date: June 30, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiromitsu NAGAYASU, Takashi KAMIJO, Takahito YONEKAWA, Hiroshi TANAKA, Shinya KISHIMOTO, Takuya HIRATA, Tatsuya TSUJIUCHI, Masaru CHIYOMARU, Koji NAKAYAMA, Masahiko TATSUMI, Yasuyuki YAGI, Kazuhiko KAIBARA
  • Publication number: 20110135550
    Abstract: [Object] To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. [Means of Solution] A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein.
    Type: Application
    Filed: October 7, 2010
    Publication date: June 9, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Takahito Yonekawa, Hiroshi Tanaka, Shinya Kishimoto, Takuya Hirata, Tatsuya Tsujiuchi, Masaru Chiyomaru, Koji Nakayama, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Patent number: 7946939
    Abstract: A sprocket (3A, 3B) is fixed onto a crank shaft (2) projecting outward from a cylinder block (1) of an internal combustion engine (100). A timing chain (7A, 7B) is looped around the sprocket (3A, 3B). A slippage prevention mechanism (10) which prevents slippage of the timing chain (7A, 7B) with respect to the sprocket (3A, 3B) comprises an arm (10C) extending from a base portion (10A) fixed to the cylinder block. A slippage prevention rail (10B) in the form of an arc-shaped recess is formed on the arm (10C) so as to face the engaging part between the sprocket (3A, 3B) and the timing chain (7A, 7B) with a clearance smaller than the height of a tooth of the sprocket (3A, 3B) therebetween. The slippage prevention rail (10B) thus constructed does not interfere with other members fixed onto the crank shaft (2).
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 24, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takuya Hirata, Noriyoshi Maruyama
  • Publication number: 20100218674
    Abstract: A CO2 recovery apparatus according to a first embodiment of the present invention includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbing liquid to reduce CO2 in the flue gas; a regenerator that reduces CO2 in CO2 absorbing liquid (rich solvent) that has absorbed the CO2 in the CO2 absorber to regenerate the CO2 absorbing liquid, so that the regenerated absorbing liquid (lean solvent), having CO2 reduced in the regenerator, is reused in the CO2 absorber; a first compressor to a fourth compressor that compress the CO2 gas released from the regenerator; and an O2 reducing apparatus arranged between the second compressor and a second cooler to reduce O2 in the CO2 gas.
    Type: Application
    Filed: October 27, 2009
    Publication date: September 2, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Keiji Fujikawa, Takuya Hirata, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Patent number: 7572200
    Abstract: A chain drive system includes a drive sprocket, a driven sprocket and a chain looped over the drive sprocket and the driven sprocket. The chain and the sprocket having respective sliding surfaces slidable relative to each other in the presence of lubricating oil, and any adjacent chain components of the chain having respective sliding surfaces slidable relative to each other in the presence of lubricating oil. At least one of the sliding surfaces between the chain and the sprocket and at least one of the sliding surfaces between any adjacent chain components have hard carbon coatings formed on base portions thereof. Each of the hard carbon coatings has a hydrogen content of 10 atomic % or less.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: August 11, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Murata, Takuya Hirata, Makoto Kano, Yutaka Mabuchi, Takahiro Hamada, Masashi Yamaguchi
  • Patent number: 7488463
    Abstract: The carbon dioxide recovery system includes a carbon dioxide absorption tower which absorbs and removes carbon dioxide from the combustion exhaust gas of a boiler by an absorption liquid, and a regeneration tower which heats and regenerates the loaded absorption liquid with carbon dioxide. The regeneration tower includes plural loaded absorption liquid heating means, which heat the loaded absorption liquid and remove carbon dioxide in the loaded absorption liquid. The turbine includes plural lines which extract plural kinds of steam with different pressures from the turbine and which supply the plural kinds of steam to the plural loaded absorption liquid heating means as their heating sources. The plural lines make the pressure of supplied steam increase from a preceding stage of the plural loaded absorption liquid heating means to a post stage of the plural loaded absorption liquid heating means.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: February 10, 2009
    Assignees: Mitsubushi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Takuya Hirata, Tomio Mimura, Yasuyuki Yagi
  • Publication number: 20080078292
    Abstract: An absorbing solution according to the present invention is an absorbing solution that absorbs CO2 or H2S in gas or both of CO2 and H2S. The absorbing solution is formed by adding desirably 1 to 20 weight percent of tertiary monoamine to a secondary-amine composite absorbent such as a mixture of secondary monoamine and secondary diamine. Consequently, it is possible to control degradation in absorbing solution amine due to oxygen or the like in gas. As a result, it is possible to realize a reduction in an absorption loss, prevention of malfunction, and a reduction in cost. This absorbing solution is suitably used in an apparatus for removing CO2 or H2S or both of CO2 and H2S.
    Type: Application
    Filed: April 3, 2006
    Publication date: April 3, 2008
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Tomio Mimura, Yasuyuki Yagi, Kouki Ogura, Masaki Iijima, Toru Takashima, Hiroshi Tanaka, Takuya Hirata
  • Publication number: 20080010691
    Abstract: A method of screening a therapeutic agent for irritable bowel syndrome, characterized in that a test substance is administered to a conditioned fear stressed animal model and the condition of defecation and/or bowel movement thereof is measured.
    Type: Application
    Filed: January 26, 2006
    Publication date: January 10, 2008
    Inventors: Toshiyuki Funatsu, Takuya Hirata, Yoshihiro Keto
  • Patent number: 7316737
    Abstract: An amine recovery apparatus includes a carbon dioxide absorption section and plural water washing sections. The carbon dioxide absorption section brings the exhaust gas into vapor-liquid contact with an absorbing solution containing an amine compound and produces decarbonated exhaust gas. The water washing sections bring the decarbonated exhaust gas into vapor-liquid contact with washing water and sequentially recover the amine compound accompanying the decarbonated exhaust gas, while the decarbonated exhaust gas passes through the water washing sections in sequence from inlet portions to outlet portions thereof, respectively. The water washing sections have plural liquid reservoirs provided at the inlet portions of the water washing sections, respectively, and the liquid reservoirs reserve the washing water which is transported to the outlet portions of the water washing sections and supplied to the water washing sections, respectively.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: January 8, 2008
    Assignees: The Kansai Electric Power Co., Inc., Mitsubishi Heavy Industries, Ltd.
    Inventors: Tomio Mimura, Takashi Nojo, Kazuo Ishida, Hiroshi Nakashoji, Hiroshi Tanaka, Takuya Hirata
  • Publication number: 20070271080
    Abstract: A computer is made to execute the procedures of separating a hardware side from a software side within a reference source, and generating a merge model comprising a firmware interface for the software side to call the hardware side and comprising a hardware interface enabling an access to a mathematical function or a variable on the hardware side in response to a call from the firmware interface; and generating a system-on-chip (SoC) model comprising a CPU model for implementing a firmware interface with the software side, a hardware model for implementing the hardware side and a hardware interface connecting the CPU model to the hardware model.
    Type: Application
    Filed: November 6, 2006
    Publication date: November 22, 2007
    Inventors: Masato Tatsuoka, Susumu Kashiwagi, Masahiko Toichi, Kazumasa Nakamura, Masayuki Tsuji, Takuya Hirata, Atsushi Ike
  • Publication number: 20070249445
    Abstract: A sprocket (3A, 3B) is fixed onto a crank shaft (2) projecting outward from a cylinder block (1) of an internal combustion engine (100). A timing chain (7A, 7B) is looped around the sprocket (3A, 3B). A slippage prevention mechanism (10) which prevents slippage of the timing chain (7A, 7B) with respect to the sprocket (3A, 3B) comprises an arm (10C) extending from a base portion (10A) fixed to the cylinder block. A slippage prevention rail (10B) in the form of an arc-shaped recess is formed on the arm (10C) so as to face the engaging part between the sprocket (3A, 3B) and the timing chain (7A, 7B) with a clearance smaller than the height of a tooth of the sprocket (3A, 3B) therebetween. The slippage prevention rail (10B) thus constructed does not interfere with other members fixed onto the crank shaft (2).
    Type: Application
    Filed: April 6, 2007
    Publication date: October 25, 2007
    Inventors: Takuya Hirata, Noriyoshi Maruyama
  • Patent number: 7284525
    Abstract: There is provided a structure for connecting a piston to a crankshaft in an internal combustion engine, including a piston pin fitted into the piston, a crankpin integral with the crankshaft and a connecting rod having a piston pin bearing portion slidably engaged with an outer cylindrical portion of the piston pin and a crankpin bearing portion slidably engaged with an outer cylindrical portion of the crankpin. At least one of the piston pin bearing portion of the connecting rod and the outer cylindrical portion of the piston pin and at least one of the crankpin bearing portion of the connecting rod and the outer cylindrical portion of the crankpin have hard carbon coatings formed thereon with a hydrogen content of 20 atomic % or less.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: October 23, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kimio Nishimura, Yutaka Mabuchi, Takashi Murata, Takuya Hirata, Makoto Kano, Takahiro Hamada, Masashi Yamaguchi
  • Patent number: 7183412
    Abstract: An ester or amide derivative represented by the general formula (I) or a pharmaceutically acceptable salt thereof. Particularly, an ester or amide derivative of 4-oxo-1,4-dihydroqunoline-2-carboxylic acid represented by the general formula (I?) or (I?), or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: February 27, 2007
    Assignee: Astellas Pharma Inc.
    Inventors: Jun-ichi Kazami, Masato Watanabe, Takuya Hirata
  • Publication number: 20060248890
    Abstract: To provide a carbon dioxide recovery system capable of suppressing reduction in turbine output at the time of regenerating an absorption liquid with carbon dioxide absorbed therein, a power generation system using the carbon dioxide recovery system, and a method for these systems.
    Type: Application
    Filed: February 7, 2006
    Publication date: November 9, 2006
    Applicants: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Takuya Hirata, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 7093152
    Abstract: A semiconductor device includes a clock generation unit which generates a clock signal, a first module which asserts a clock-control request signal, and one or more second modules, each of which receives the clock signal and the clock-control request signal, and asserts a clock-control acknowledge signal after stopping an operation thereof upon completion of a currently performed operation in response to the assertion of the clock-control request signal, wherein the clock generation unit selectively changes the clock signal supplied to the one or more second modules in response to assertion of all clock-control acknowledge signals output from the one or more second modules.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: August 15, 2006
    Assignee: Fujitsu Limited
    Inventors: Takashi Shikata, Taizoh Satoh, Yoshihiro Hiji, Takuya Hirata