Patents by Inventor Tamara L. Troy

Tamara L. Troy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8825140
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 2, 2014
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Publication number: 20120150026
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Application
    Filed: February 15, 2012
    Publication date: June 14, 2012
    Applicant: Xenogen Corporation
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Patent number: 8180435
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: May 15, 2012
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Publication number: 20120041302
    Abstract: An imaging subject handling system includes multiple portable imaging subject cartridges that optionally compress and anesthetize living imaging subjects therein during imaging, multiple receiving bases installed within separate imaging systems that interface with the cartridges, and multiple gas delivery systems that deliver an anesthetic gas flow to an installed cartridge. The cartridges include a gas delivery interface that accepts the anesthetic gas flow and provides it to the imaging subject, and one or more walls, a bottom and a top defining a closed interior that retains the anesthetic gas therewithin while the cartridge is in transport between separate imaging systems. The walls, bottom and/or top can be optically transparent and radiolucent to facilitate imaging. The cartridge can include a locking mechanism, a nose cone for the imaging subject, and co-registration features located on outside surfaces to facilitate the merging of images within software from multiple separate imaging systems.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 16, 2012
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: David G. NILSON, Bradley W. RICE, Heng XU, Tamara L. TROY
  • Publication number: 20100305453
    Abstract: A system and method for non-invasive biomedical optical imaging and spectroscopy with low-level light is described. The technique includes a modulated light source coupled to tissue to introduce excitation light. Fluorescent light emitted in response to the excitation light is detected with a sensor. The AC intensity and phase of the excitation and detected fluorescent light is provided to a processor operatively coupled to the sensor. A processor employs the measured emission kinetics of excitation and fluorescent light to “map” the spatial variation of one or more fluorescence characteristics of the tissue and generate a corresponding image of the tissue via an output device. The fluorescence characteristic may be provided by exogenous contrast agents, endogenous fluorophores, or both. A technique to select or design an exogenous fluorescent contrast agent to improve image contrast is also disclosed.
    Type: Application
    Filed: July 2, 2010
    Publication date: December 2, 2010
    Inventors: Eva M. SEVICK-MURACA, Tamara L. TROY, Jeffery S. REYNOLDS
  • Publication number: 20100262019
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: XENOGEN CORPORATION
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Patent number: 7764986
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Grant
    Filed: July 29, 2007
    Date of Patent: July 27, 2010
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Patent number: 7649185
    Abstract: Described herein is a phantom device that simplifies usage, testing, and development of light imaging systems. The phantom device includes a body and a fluorescent light source internal to the body. The body comprises an optical material designed to at least partially resemble the optical behavior of mammalian tissue. The phantom device has many uses. One use of the phantom device permits testing of tomography software in the imaging system, such as software configured for 3D reconstruction of the fluorescent light source. Another use tests spectral unmixing software in the imaging system. The phantom device also allows a user to compare trans- and epi-fluorescent illumination imaging results.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: January 19, 2010
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, David G. Nilson, Tamara L. Troy
  • Patent number: 7629573
    Abstract: The present invention relates to a phantom device that simplifies usage and testing of a low intensity light imaging system. The phantom device includes a body and a light source internal to the body. The body comprises an optically selective material designed to at least partially resemble the optical behavior of mammalian tissue. Imaging the light source or phantom device may incorporate known properties of the optically selective material. Testing methods described herein assess the performance of a low-level light imaging system (such as the software) by processing light output by the phantom device and comparing the output against known results. The assessment builds a digital representation of the light source or test device and compares one or more components of the digital representation against one or more known properties for the light source or the test device.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: December 8, 2009
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, David G. Nilson, Normand P. Nantel, Tamara L. Troy
  • Publication number: 20080175790
    Abstract: A system and method for non-invasive biomedical optical imaging and spectroscopy with low-level light is described. The technique includes a modulated light source coupled to tissue to introduce excitation light. Fluorescent light emitted in response to the excitation light is detected with a sensor. The AC intensity and phase of the excitation and detected fluorescent light is provided to a processor operatively coupled to the sensor. A processor employs the measured emission kinetics of excitation and fluorescent light to “map” the spatial variation of one or more fluorescence characteristics of the tissue and generate a corresponding image of the tissue via an output device. The fluorescence characteristic may be provided by exogenous contrast agents, endogenous fluorophores, or both. A technique to select or design an exogenous fluorescent contrast agent to improve image contrast is also disclosed.
    Type: Application
    Filed: December 13, 2007
    Publication date: July 24, 2008
    Applicant: The Texas A&M University System
    Inventors: Eva M. Sevick-Muraca, Tamara L. Troy, Jeffery S. Reynolds
  • Patent number: 7403812
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 22, 2008
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Patent number: 7328059
    Abstract: A system and method for non-invasive biomedical optical imaging and spectroscopy with low-level light is described. The technique includes a modulated light source coupled to tissue to introduce excitation light. Fluorescent light emitted in response to the excitation light is detected with a sensor. The AC intensity and phase of the excitation and detected fluorescent light is provided to a processor operatively coupled to the sensor. A processor employs the measured emission kinetics of excitation and fluorescent light to “map” the spatial variation of one or more fluorescence characteristics of the tissue and generate a corresponding image of the tissue via an output device. The fluorescence characteristic may be provided by exogenous contrast agents, endogenous fluorophores, or both. A technique to select or design an exogenous fluorescent contrast agent to improve image contrast is also disclosed.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: February 5, 2008
    Assignee: The Texas A & M University System
    Inventors: Eva Sevick-Muraca, Tamara L. Troy, Jeffery S. Reynolds
  • Patent number: 6777240
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;'s and &mgr;a. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: August 17, 2004
    Assignee: Sensys Medical, Inc.
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara L. Troy, Suresh Thennadil, Thomas B. Blank
  • Publication number: 20030113924
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+ and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;′s and &mgr;a. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Application
    Filed: September 11, 2002
    Publication date: June 19, 2003
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara` L. Troy, Suresh Thennadil, Thomas B. Blank
  • Publication number: 20030040664
    Abstract: A method of measuring in vivo skin tissue thickness employs noninvasive NIR absorbance spectra. Constituents of a tissue sample are characterized and quantified based on differing absorbance spectra and scattering properties, allowing thickness and chemical composition of layers to be estimated. Pathlength normalization reduces spectral interference in predicting analyte concentrations.
    Type: Application
    Filed: August 1, 2002
    Publication date: February 27, 2003
    Inventors: Suresh Thennadil, Thomas B. Blank, Tamara L. Troy
  • Publication number: 20030002028
    Abstract: A method of investigating the location and size of a light-emitting source in a subject is disclosed. In practicing the method, one first obtains a light intensity profile by measuring, from a first perspective with a photodetector device, photons which (i) originate from the light-emitting source, (ii) travel through turbid biological tissue of the subject, and (iii) are emitted from a first surface region of interest of the subject. The light-intensity profile is matched against with a parameter-based biophotonic function, to estimate function parameters such as depth and size. The parameters so determined are refined using data other than the first measured light intensity profile, to obtain an approximate depth and size of the source in the subject. Also disclosed is an apparatus for carrying out the method.
    Type: Application
    Filed: May 17, 2002
    Publication date: January 2, 2003
    Inventors: Bradley W. Rice, Daniel G. Stearns, Tamara L. Troy
  • Patent number: 6475800
    Abstract: The invention provides a class of samples that model the human body. This family of samples is based upon emulsions of oil in water with lecithin acting as the emulsifier. These solutions that have varying particle sizes may be spiked with basis set components (albumin, urea and glucose) to simulate skin tissues further. The family of samples is such that other organic compounds such as collagen, elastin, globulin and bilirubin may be added, as can salts such as Na+, K+ and Cl−. Layers of varying thickness with known index of refraction and particle size distributions may be generated using simple crosslinking reagents, such as collagen (gelatin). The resulting samples are flexible in each analyte's concentration and match the skin layers of the body in terms of the samples reduced scattering and absorption coefficients, &mgr;ms and &mgr;ma. This family of samples is provided for use in the medical field where lasers and spectroscopy based analyzers are used in treatment of the body.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: November 5, 2002
    Assignee: Instrumentation Metrics, Inc.
    Inventors: Kevin H. Hazen, James Matthew Welch, Stephen F. Malin, Timothy L. Ruchti, Alexander D. Lorenz, Tamara L. Troy, Suresh Thennadil, Thomas B. Blank
  • Publication number: 20020072677
    Abstract: A system and method for non-invasive biomedical optical imaging and spectroscopy with low-level light is described. The technique consists of a modulated light source coupled to tissue to introduce excitation light. Fluorescent light emitted in response to the excitation light is detected with a sensor. The AC intensity and phase of the excitation and detected fluorescent light is provided to a processor operatively coupled to the sensor. A processor employs the measured emission kinetics of excitation and fluorescent light to “map” the spatial variation of one or more fluorescence characteristics of the tissue and generate a corresponding image of the tissue via an output device. The fluorescence characteristic may be provided by exogenous contrast agents, endogenous fluorophores, or both. A technique to select or design an exogenous fluorescent contrast agent to improve image contrast is also disclosed.
    Type: Application
    Filed: May 31, 2001
    Publication date: June 13, 2002
    Inventors: Eva Sevick-Muraca, Tamara L. Troy, Jeffery S. Reynolds
  • Publication number: 20010041829
    Abstract: A method of measuring in vivo skin tissue thickness employs noninvasive NIR absorbance spectra. Constituents of a tissue sample are characterized and quantified based on differing absorbance spectra and scattering properties, allowing thickness and chemical composition of layers to be estimated. Pathlength normalization reduces spectral interference in predicting analyte concentrations.
    Type: Application
    Filed: December 21, 2000
    Publication date: November 15, 2001
    Inventors: Suresh Thennadil, Thomas B. Blank, Tamara L. Troy