IMAGING OF LIGHT SCATTERING TISSUES WITH FLUORESCENT CONTRAST AGENTS
A system and method for non-invasive biomedical optical imaging and spectroscopy with low-level light is described. The technique includes a modulated light source coupled to tissue to introduce excitation light. Fluorescent light emitted in response to the excitation light is detected with a sensor. The AC intensity and phase of the excitation and detected fluorescent light is provided to a processor operatively coupled to the sensor. A processor employs the measured emission kinetics of excitation and fluorescent light to “map” the spatial variation of one or more fluorescence characteristics of the tissue and generate a corresponding image of the tissue via an output device. The fluorescence characteristic may be provided by exogenous contrast agents, endogenous fluorophores, or both. A technique to select or design an exogenous fluorescent contrast agent to improve image contrast is also disclosed.
The present invention relates to spectroscopic imaging of heterogeneous light scattering tissue, and more particularly, but not exclusively, relates to in vivo imaging by mapping a fluorescence characteristic of the tissue.
The early detection of disease promises a greater efficacy for therapeutic intervention. In recent years, noninvasive techniques have been developed which have improved the ability to provide a reliable and early diagnosis of various afflictions by detecting biochemical changes in the tissue of a patient. For example, Magnetic Resonance Imaging (MRI) has successfully monitored the relaxation of spin states of paramagnetic nuclei in order to provide biomedical imaging and biochemical spectroscopy of tissues. Unfortunately, the complexity and expense of MRI diagnostics limit its availability—especially as a means of routine monitoring for disease.
Another powerful analytical technique with an increasing number of applications in the biological sciences is fluorescence spectroscopy. Applications of fluorescence spectroscopy include biomedical diagnostics, genetic sequencing, and flow cytometry. As exemplified by U.S. Pat. Nos. 5,421,337 to Richards-Kortum et al. and 5,452,723 to Wu et al., several investigators have suggested various procedures to differentiate diseased and normal tissues based on fluorescence emissions through noninvasive external measurements or minimally invasive endoscopic measuring techniques. Unfortunately, these procedures generally fail to provide a viable spatial imaging procedure. One reason imaging based on fluorescence has remained elusive is that meaningful relational measurements of fluorescence characteristics from a random, multiply scattering media, such as tissue, are difficult to obtain. For example, fluorescent intensity, which is a function of the fluorescent compound (or fluorophore) concentration or “uptake” is one possible candidate for imaging; however, when this property is used in an optically dense medium, such as a particulate (cell) suspension, powder, or tissue, the local scattering and absorption properties confound measured fluorescent intensities.
Besides intensity, other properties of selected fluorophores such as fluorescent quantum efficiency and lifetime are also sensitive to the local biochemical environment. As used herein, “fluorescent quantum efficiency” means the fractional number of fluorescent photons emitted for each excitation photon absorbed or the fraction of decay events which result in emission of a fluorescent photon. “Fluorescent lifetime,” as used herein, is defined as the mean survival time of the activated fluorophore or the mean time between the absorption of an excitation photon and emission of a fluorescent photon. Like intensity, measurement of these fluorescence characteristics is often limited to well-defined in vitro applications in the research laboratory or in flow cytometry where issues such as scattering, absorption, and changing fluorophore concentrations can be controlled or measured. Moreover, these limitations generally preclude meaningful fluorescence-based imaging of hidden tissue heterogeneities, such as tumors or other diseased tissue regions, which cannot be detected by visual inspection.
With the development of techniques to interrogate tissues using fluorescence in the near-infrared red (NIR) wavelength regime, noninvasive detection of diseased tissues located deep within normal tissues may also be possible since NIR excitation and emission light can travel significant distances to and from the tissue-air interface. U.S. Pat. Nos. 5,213,105 to Gratton et al. and 5,353,799 to Chance are cited as further background concerning NIR interrogation. As in the case of MRI, x-ray, CT, and ultrasound imaging modalities, there is a potential to enhance NIR fluorescence imaging techniques with contrast agents. Typically, contrast agents for in vivo imaging have depended upon preferential uptake into diseased tissue to provide the desired imaging enhancement by absorbing the interrogating radiation. The light absorbing tissue provides an enhanced spatial variation in measured intensity of the radiation to improve image contrast. In the case of a fluorescent contrast agent, the intensity of fluorescent light emitted in response to the absorption may provide this intensity variation. Generally, the larger the difference in spatial variation, as artificially imposed by a contrast agent, the more improved the reconstructed image of interior tissues. Nonetheless, the effectiveness of exogenous contrast agents depends greatly upon the selectivity of the agent for the tissue region of interest. Unfortunately, targeted and site specific delivery of is drugs and contrast agents has historically been a limiting factor in both therapeutics and diagnostic imaging. Consequently, additional mechanisms for inducing contrast that are not dependent solely upon tissue selectively of the agent would be advantageous.
Thus, a need remains for a technique to noninvasively image multiply scattering tissue based on one or more fluorescence characteristics. Preferably, this technique includes the implementation of exogenous contrast agents with image-enhancing properties beyond preferential absorption of the interrogating radiation. The present invention satisfies this need and provides other advantages.
SUMMARY OF THE INVENTIONThe present invention relates to spectroscopic imaging of heterogeneous, light scattering materials. Several aspects of the invention are novel, nonobvious, and provide various advantages. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain features which are characteristic of the present invention are described briefly as follows.
One feature of the present invention is a technique for imaging a heterogeneous light scattering material. This technique includes exposing the surface of a material to light from a light source and detecting an emission in response. A spatial variation of a fluorescence characteristic of the material is determined as a function of the emission with a processor. The spatial variation may be characterized by a set of values representative of the fluorescence characteristic as a function of position. An image is generated in accordance with the spatial variation that corresponds to the heterogeneous composition of the material. This technique may be applied in vivo to biologic tissue using external or endoscopic instrumentation to detect heterogeneities indicative of disease. The technique may include the introduction of a fluorescent contrast agent into the material. The fluorescence characteristic detected may be fluorescence lifetime, fluorescence quantum efficiency, a fluorophore absorption coefficient, fluorescent yield (a function of fluorescent quantum efficiency and fluorophore absorption), or another fluorescence characteristic known to those skilled in the art.
Another feature includes introducing a fluorescent contrast agent into a biologic tissue. This contrast agent has a predetermined lifetime and the tissue multiply scatters light with a mean time-of-flight between scattering events. The lifetime and the mean time-of-flight are within a factor of about ten of each other. The tissue is exposed to an excitation light with a predetermined time-varying intensity and a light emission is detected from the tissue in response to this exposure. An image of the tissue is generated by mapping spatial variation of a level of a fluorescence characteristic of the tissue from the light emission in accordance with a mathematical relationship modeling multiple light scattering behavior of the tissue.
In a further feature, the agent may be selected in accordance with a predetermined relationship between degree of image contrast and at least one of fluorescence yield or the fluorescence lifetime. Preferably, the lifetime is in a range of about 0.1 to 10 nanoseconds (ns). A more preferred range is 0.5 to 5 ns. A still more preferred range is about 0.2 to 2 ns. A most preferred value for the lifetime is about 1 ns.
An additional feature includes evaluating ability of a number of fluorescent agents to provide image contrast between different tissue types. This evaluation includes determining a relationship between degree of image contrast and at least one of fluorescence lifetime or fluorescence yield of the agent. One of the agents is selected based on the evaluation. The selected agent is provided for introduction into a biologic tissue to enhance imaging performed in accordance with a mathematical expression modeling the behavior of multiply scattered light traveling through the tissue.
In still another feature, a biologic tissue is exposed to a first excitation light and a first emission is detected from the tissue in response to the first excitation light. A fluorescent contrast agent is introduced into the tissue after this detection and the tissue is then exposed to a second excitation light. A second emission is sensed in response to the second excitation light. Data corresponding to the first emission is compared with data corresponding to the second emission to evaluate contrast provided by the agent. Contrast may be determined as a function of at least one of fluorescence lifetime, fluorescence yield, or quantum efficiency. For a frequency domain form of this evaluation, the image contrast may be evaluated in terms of phase contrast or modulation contrast. Moreover, the wavelength of the first excitation light may be selected to be generally the same as the wavelength of the fluorescent light emitted by the agent in response to the second excitation light.
Accordingly, it is one object of the present invention to map a fluorescent property of a light scattering material that varies with the heterogeneous composition of the material to generate a corresponding image.
It is another object of the present invention to provide a spectroscopic technique for noninvasively monitoring fluorescent properties of hidden tissue volumes in a living organism and to monitor selected metabolites of an organism in vivo.
Yet another object is to provide a technique to select and design fluorescent contrast agents who improve contrast for photon migration based imaging. This technique may include the selection of contrast enhancing properties that are not solely dependent upon uptake.
Further objects, features, aspects, benefits, and advantages of the present invention will become apparent from the drawings and description contained herein.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described techniques, methods, systems, and devices; and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
System 110 includes modulated light source 120 to supply an intensity-modulated excitation light of predetermined frequency and wavelength to tissue 100 via optic fiber 123. Preferably, source 120 is a laser diode of conventional design with a modulated output in the 1-500 MHz frequency range and a monochromatic output in the 100 to 1000 nanometer (nm) wavelength range. The specific wavelength is selected to excite a designated fluorophore in tissue 100. Beam splitter 126 may be employed to direct a small portion of the excitation signal to reference sensor 128 for processing purposes.
System 110 also includes detection subsystem 140 which has optic fibers 143 to detect photons emitted from tissue 100 from a number of corresponding detection sites. Subsystem 140 includes one or more emission sensors 148. Detection subsystem 140 also includes an interference filter to obtain a selected emission wavelength corresponding to emission of a designated fluorophore in tissue 100. In one embodiment, subsystem 140 includes a single sensor 148 and the signals from fibers 143 are multiplexed. Preferably, sensors 128, 148 are Photo-multiplier Tubes (PMTs) or photodiode detectors but other sensor varieties, such as image intensifiers and charge-coupled devices, are also contemplated.
Sensors 128, 148 and source 120 are operatively coupled to heterodyne subsystem 130. Subsystem 130 is configured to obtain information about the phase, AC, and DC intensity of light detected with sensor 128 relative to light detected with the sensor 148 using conventional heterodyning techniques. In one embodiment, heterodyne subsystem 130 includes a signal synthesizer phase-locked to the repetition rate of a laser used for source 120. For this embodiment, subsystem 130 includes an amplifier to gain modulate sensors 128, 148 at a harmonic of a laser repetition rate (when a pulsed laser is used) or at the modulation frequency (when a modulated laser diode is used) plus an offset to provide the desired is heterodyning. In one variation of this embodiment, an 80 MHz pulsed laser repetition rate is divided down to 10 MHz and input to the synthesizer, and a heterodyning offset of 100 kHz is input to the amplifiers for sensors 128, 148.
Sensors 128, 148 are operatively coupled to processor 160. Processor 160 includes input/control device 162, output device 164, and memory 166. Processor 160 may be an electronic circuit comprised of one or more components. Similarly, processor 160 may be comprised of digital circuitry, analog circuitry, or both. Also, processor 160 may be programmable, an integrated state machine, or a hybrid combination thereof. Preferably, input device 162 is a keyboard or input control of a conventional variety, and output device 166 is a Cathode Ray Tube (CRT) based video display, printer, or other image display system known to those skilled in the art. Memory 166 is preferably of the electronic (e.g. solid state), magnetic, or optical variety of the type readily available for use with electronic controllers or processors. Furthermore, Memory 166 may include an optical disk memory (CD), electromagnetic hard or floppy disk media, or a combination of these.
In stage 214, light source 120 configured according to the selected fluorophore excites tissue 100. In stage 216, the phase, θobs, and log of AC intensity, Mobs, of the emission at each detection site “i” relative to the excitation light from source 120 are determined at the heterodyne (or offset) frequency. For “Di” number of detection sites, the detected or observed phase and AC intensity are indexed by “i” using the following notation: (θobs)i and (Mobs)i, respectively. Processor 160 stores the relative phase and AC intensity information in memory 166.
In stage 218, a two dimensional grid is established for an area of tissue 100 selected for imaging, and a matrix of grid points is established and indexed by “j”. A uniform seed value for the fluorescent yield, yj=(ημa
After establishing this initial estimate of the fluorescence characteristics of yield, ημa
-
- c velocity of light in a vacuum;
- D(r) optical diffusion coefficient;
- Di number of detection sites;
- f modulation frequency;
- I identity matrix;
- i detection site index;
- J Jacobian matrix relating the sensitivity at each grid point, j, to the response at each detection site;
- j grid point index;
- Jj,i individual elements of the Jacobian matrix J;
- k source index;
- M log of AC intensity of modulated fluorescent light position;
- m index to multiple modulation frequencies;
- r position (in two or three dimensions);
- Sk number of modulated light sources;
- S(r, ω) source term for the modulated light at position r and frequency ω;
Greek
-
- χ2 merit function representing the least squares error;
- φx(r,ω) complex number representing photon flux in the Frequency domain at position r and frequency w;
- η quantum efficiency of fluorescent probe or dye;
- μa average absorption coefficient;
- μa
m absorption coefficient of the fluorescence light by both the nonfluorescing chromophores and fluorophore; - μa
x absorption coefficient of the excitation light by both the nonfluorescing chromophores and fluorophore; - μa
x→c adsorption coefficient due to nonfluorescing chromophores; - μa
x→m adsorption coefficient of excitation light by fluorophores; - μ′s effective scatting coefficient;
- θ phase-shift of one modulated light wave to another;
- τ lifetime of activated probe or dye at location r;
- ω angular modulation frequency, given by 2πf;
Subscripts
-
- obs observed or experimental data;
- x excitation light; and
- m fluorescence or emission light.
In stage 230, phase and relative AC intensity at each detection site “i” is calculated as a function of the initial estimates of yield and lifetime for each grid point j. The calculated phase and intensity are represented at each detection site i as (θm)i and (Mm)i, respectively. The values for (θm)i and (Mm)i are determined using the diffusion equation approximation of the radiative transport equation. The diffusion equation approximation describes the spatial and temporal transport of light in tissues or multiply scattering media. A coupled frequency domain diffusion equation can be used to predict the excitation and emission fluence rates, Φx(r, ω) and Φm(r, ω), respectively, at any location r within the selected grid of tissue 100 via equations (1) and (2):
∇·[Dx(r)∇Φx(r,ω)]−[μa
∇·[Dm(r)∇Φm(r,ω)]−[μa
The source term for the excitation light Sx(r,ω) is due to the sinusoidally modulated light at an angular frequency ω=2πf where f is typically in the MHz frequency range. The first term in both of the diffusion equations (1) and (2) represents the diffusive or “random-walk” transport of multiply scattered light where Dx,m is the optical diffusion coefficient of equation (3) as follows:
Dx,m=[3(μa
and μa and μ′s are the absorption and isotropic scattering coefficients, respectively, for tissue 100, the medium of interest. Multiple scattering of light occurs when μ′s>>μa; where μa indicates the ability to absorb light and μ′s indicates the ability to scatter light for a given material at a given wavelength. As used herein, “multiply scattered light” refers to light that travels at least five (5) times the mean isotropic scattering length, defined as 1/μ′s.
Because these optical properties are dependent on the wavelength of light, the coefficients generally differ for the excitation light from source 120 (subscript x) and fluorescent emission detected with subsystem 140 (subscript m). The total absorption coefficient at the excitation wavelength, μa
Sm(r,ω)=ημa
This term arises from the Fourier transform of the fluorescence decay term in the time domain following an incident pulse of excitation light where: is the fluorophore lifetime, η is the quantum efficiency, and the absorption coefficient, μa
Both diffusion equations (1) and (2) are linear complex elliptic equations that can be solved as boundary value problems for the complex quantities Φx(r, ω) and (r, ω). This solution employs the method of finite differences to create corresponding finite difference equations. These difference equations are utilized to obtain an approximate solution at each grid point, j. This method of solution is described in other contexts in Fulton et al., Multigrid Method for Elliptic Problems, A Review, 114 American Meteorological Society pp. 943-59 (May 1986); and B. W. Pogue et al., Initial Assessment of a Simple System for Frequency Domain Diffuse Optical Tomography, 40 Physics in Medicine and Biology pp. 1709-1729 (1995). One preferred method of performing this solution is with the MUDPACK routines described in Adams, J. C., MUDPACK: Multigrid Portable Fortran Software for the Efficient Solution of Linear Elliptic Partial Differential Equations, 34 App. Math Comp. p. 133 (1989). For the solution of the diffusion equations, it is assumed that Φm,x(r,ω)=0 on the surface 101 of tissue 100 which is known as the zero fluence boundary condition. It should be recognized that other boundary conditions may be selected and the method of solution varied accordingly.
The diffusion equations (1) and (2) may be solved for a complex number for ωm at each grid point, j. The detected signal at the surface is proportional to the normal component of the gradient of the photon fluence. To approximate the signal at detector site “i” located on surface 101 of tissue 100, the Φm value at an internal grid point closest to the site is selected which follows from the relationship that the normal component of the photon fluence gradient is proportional to Φm just inside surface 101. The calculated phase-lag, θm, and the log of AC intensity, Mm, at the detection sites “Di” are calculated from the imaginary and real parts of the complex Φm value with respect to the phase and the AC intensity of source 120.
The diffusion equations (1) and (2) provide insight into the sensitivity of changing the fluorescent optical properties of tissue 100 on θm and Mm measured at the detector sites i. This insight results from a series of calculations while fixing various parameters of the diffusion equations (1) and (2). These calculations assume circular tissue phantom 300 with an embedded, heterogeneity 302 hidden in phantom background 303 as illustrated in
In order to evaluate the influence of ημa
In order to evaluate the influence of τ, θm, and Mm were calculated at each detection site D1-D20 as the values of τ in the heterogeneity varied from 10−1 ns to 103 ns and the value of τ in the background was held at 1 ns. The background ημa
Referring back to
where σM is the typical standard deviation of noise in Mm, taken to be 0.01; Sk=number of excitation source sites indexed by k; and Di=number of detection sites indexed by i. The goal of the algorithm is to minimize χμ2 by appropriate updates of (ημa
where σθ is the typical standard deviation of noise in (θm)i, taken to be 1 degree; Sk=number of excitation source sites indexed to k; and Di=number of detection sites indexed to i. Since the lifetime influences both (θm)i and (Mm)i, the phase and AC intensity are used in equation (6).
After the comparison of stage 240 is performed by calculating the merit functions χμ2 and χτ2 control flows to conditional 250 to test whether the comparison of the observed values, (θobs)i and (Mobs)i, to the calculated values (θm)i and (Mm)i via the merit functions meets a selected convergence criteria. This criteria corresponds to the degree of tolerable error in determining the yield and lifetime values. For one embodiment, convergence is achieved when any of the following three quantities, (i) χ2, (ii) change in χ2 in successive iterations of loop 220, or (iii) relative change in χ2 in successive iterations of loop 220 is less than a predetermined threshold value of 1.0×10−5. In other embodiments a different comparison calculation and associated conditional may be employed as would occur to one skilled in the art. If conditional 250 is satisfied, control flows to stage 270 and loop 220 is exited; however, if the criteria is not satisfied, execution of loop 220 continues in stage 260.
In stage 260, the yield, (y)j=(ημa
where, the elements Ji,j of these Jacobian matrices are given by Ji,j=[∂Mi/(∂(ημa
If the convergence criteria is satisfied in conditional 250, then estimation of yield and lifetime for the grid points has reached an acceptable minimum and control flows to stage 270. In stage 270 an image signal is generated by processor 160 from the spatial variation of the yield and/or lifetime fluorescence characteristics. This image signal is sent to output device 164, which displays an image in response. Because the fluorescence characteristics of yield and lifetime typically vary with the biologic environment of the fluorophore, this image is generally indicative of tissue variation and offers the capability to detect heterogeneities 102, 103. For example, laser diodes capable of supplying Near infrared (NIR) light that can penetrate tissue several centimeters, and fluorescent contrast agents responsive to NIR light may be used to provide a viable imaging system. In one embodiment, this system is adapted for use with an endoscope.
Besides yield and lifetime, the spatial variation of other fluorescence characteristics useful to distinguish diseased tissues may be mapped using the diffusion equations (1) and (2). Such alternative fluorescence characteristics include, but are not limited to, quantum efficiency n and/or is fluorescent absorption coefficient μa
It should be appreciated that imaging in accordance with the present invention, such as process 210, includes exposing biologic tissue at the tissue-air interface to an excitation light and detecting the light which has propagated to a detector located some distance away from the source on the air-tissue interface. The time-dependent propagation characteristics of multiply scattered light emitted in response to this exposure are measured. As described in connection with process 210, an intensity-modulated light source may be employed for frequency-domain measurements. The propagating wave of intensity-modulated light is amplitude attenuated and phase-shifted relative to the excitation light owing to the spatial distribution of fluorescence properties. From exterior measurements of phase-delay and amplitude modulation, interior fluorescence properties are determined using a mathematical relationship that models the multiple light scattering behavior of the tissue, such as the diffusion equations (1) and (2). These fluorescence properties may be mapped to provide a corresponding interior image of the tissue, facilitating the identification of hidden heterogeneities.
In an alternative embodiment, measurements may be made in the time domain. For this embodiment, a pulse of light may be launched at the air-tissue interface, which is broadened during its propagation in tissues due to the spatial variation of fluorescence properties within the tissue. The broadened pulse emitted from the air-tissue interface is measured. For this embodiment, the diffusion equation in the time-domain form, or such other mathematical relationship characterizing multiply scattered light propagation through the tissue may be utilized to calculate the fluorescence characteristics as would occur to those skilled in the art. These characteristics may then be mapped to generate a corresponding image in the manner described in connection with process 210.
Both the frequency and time domain approaches account for the time propagation of light through the tissue due to multiple scattering events. For a given photon, the travel time through a multiple scattering media increases with the number of collisions or “scattering events”, which corresponds to a longer scattering path. This travel time is known as the “time-of-flight”. Typically, time-of-flight is on the order of a fraction of a nanosecond to a few nanoseconds in biologic tissue. For the usual case of many photons each traveling along different scattering paths, a mean “time-of-flight” of the photons may be determined from the frequency or time domain measurements. These time-based measurements are utilized with the corresponding mathematical model to map the fluorescence characteristics.
The fluorescence characteristic map provides an image of tissue that may be based only on intrinsic fluorophores in the tissue or enhanced by introduction of a contrast agent that is selective to tissue volumes of interest. This contrast agent may absorb radiation as in the case of contrast agents for x-ray and CT imaging to provide a corresponding darkening of the image regions for the tissue volumes of interest. Unfortunately, the contrast provided through selective absorption is limited. Accordingly, in another embodiment of the present invention, a technique to select exogenous contrast agents which augment the conventional contrast mechanisms is provided. It has been discovered that fluorescence properties that change with the local biochemical environment often provide greater contrast for reconstruction of diseased tissue volumes that can be afforded by absorption-based contrast alone. Among the properties that offer this local environment contrast mechanism, are fluorescence lifetime τ, i.e., the mean time between the absorption of an excitation photon and the emission of a fluorescent photon; fluorescence quantum efficiency η, i.e., the number of fluorescent photons emitted per excitation photon absorbed; and fluorescence quantum yield y.
It has been discovered that fluorophore contrast agents having a fluorescence lifetime within an order of magnitude—or factor of ten (10)—of photon “time-of-flights” of the tissue being interrogated are surprisingly advantageous in providing contrast for photon migration imaging. One way of utilizing this surprising advantage is to select an agent with a fluorescence lifetime within a factor of ten (10) of the mean time-of-flight predicted for the tissue to be imaged. Typically, by applying this principle, a preferred range for the contrast agent lifetime of about 0.1 to 10 ns results. More preferably, the range for the fluorescence lifetime of the contrast agent is within a range of about 0.5 to 5 ns. A still more preferred range for fluorescence lifetime of the agent is about 0.2 to about 2 ns. A most preferred value for the lifetime is about 1 ns.
It has also been discovered that fluorescence characteristics may influence the resolution of measurements of the detected light emission. For example, in the frequency domain, it has been found that the amplitude of the intensity-modulated fluorescent light emanating from a hidden heterogeneity containing the agent generally increases with quantum yield y or quantum efficiency η. Further, as fluorescence lifetime τ within the heterogeneity increases relative to its surroundings, the phase contrast increases. Conversely, the amplitude of the detected intensity-modulated light decreases with increasing fluorescence lifetime τ within the heterogeneity relative to its surroundings. Through these discoveries, a fluorescent agent may be selected or formulated to provide a desired measurement resolution and fluorescence lifetime contrast suitable for photon migration interrogation of a heterogeneous arrangement of tissue. These discoveries are further described in connection with Examples 4-7 at the end of this description.
Generally, as Examples 4-7 illustrate, the selection or formulation of a suitable contrast agent is performed by determining the relationship between image contrast and fluorescent properties such as lifetime, yield, or quantum efficiency a function of the location of a heterogeneity selective to the given contrast agent. These relationships may be evaluated for a number of different agents to select a preferred agent for a given contrast problem. For frequency domain based evaluation, image contrast may be characterized in terms of phase shift variation, modulation variation, or both. Furthermore, the image contrast may be enhanced by measuring the response of a sample to a first excitation light without the agent to provide a baseline (the “absence” case), and then measuring the response to a second excitation light after introduction of the agent (the “presence” case). Data corresponding to these two responses is compared to evaluate the contrast capability of agent. The first excitation light wavelength may be selected to stimulate intrinsic fluorescent response of the tissue at the same wavelength expected to stimulate agent fluorescence. Alternatively, the first excitation light wavelength may be the same as for the fluorescent light emitted by the agent to enhance separation of intrinsic tissue fluorescence from fluorescence of the agent. Also, multiple comparisons may be performed using different wavelengths to better evaluate the influence of the contrast agent.
In another embodiment of the present invention, the photon fluence equation and Jacobian estimation process is adapted to determine a map of a designated fluorophore uptake concentration. For this embodiment, a first map of chromophore adsorption coefficients μa
The elements of the four Jacobian matrices employed,
respectively. Updates to the absorption and scattering map were conducted to minimize the merit function η2:
where ns=Sk and nd=Di.
After generating the first map, the designated fluorescent contrast agent is introduced, and the total adsorption coefficient μa
Another alternative embodiment measures the emission responsive to each of a number of light source modulation frequencies f. The total number of different frequencies employed is designated Mf. To obtain this additional data, an iteration of loop 220 is performed for each frequency f indexed to m. The number of sources, Sk and detection sites Di are indexed to k and i, respectively. This additional data may be used to enhance imaging results obtained with system 110 or to permit reduction of the number of detection sites or excitation source sites in the evaluation. A representative merit function corresponding to this additional data is given in equation (12) as follows:
Besides fluorescence yield and lifetime, the multi-frequency method can be employed to map other optical characteristics of interest. Besides a sinusoidally modulated light source, the present invention may be adapted to operate with a pulsed or other time-varying excitation light source in alternative embodiments.
Following each acquired image, a phase delay between the image intensifier 430 and the laser diode 424 is induced by stepping the phase of the image intensifier 430 to values between 0 and 360 degrees with the frequency synthesizer 452 under the control of processor 460. Since the gain modulation of image intensifier 430 and laser diode 424 occurs at the same frequency, homodyning results in a steady phosphorescent image on intensifier 430, which is dependent upon phase. Preferably, control between synthesizer 452 and processor 460 is obtained by a conventional GPIB interface. Images from the phosphorescent screen of the image intensifier 430 are then gathered at each phase delay. The incremental phase delayed images are then used to generate a map of phase-shift and intensity modulation ratio between the excitation and emitted light from phantom 400. By applying interference or appropriate optical filters, the emission light may be selectively separated from the excitation light and measured. Camera 434 output may be processed by processor 460 using process 210.
In other embodiments, a wide area illumination source is preferred to provide a larger, more uniform front illumination in a reflective geometry. This illumination approach facilitates faster imaging of multiple sights and a more natural physical correlation between photon migration images and pathology. Also, a camera which has a tapered fiber optic coupler from the image intensifier to the CCD array is envisioned to increase the efficiency of light coupling from the intensifier to the CCD array and reduce the physical size and weight of the imager.
The present invention will be further described with reference to the following specific Examples 1-8. It will be understood that these examples are illustrative and not restrictive in nature. Examples 1-4 involve the computer simulation of the process 210. Simulations of this kind, including the simulation of tissue, are an acceptable means of demonstrating fluorescent spectroscopic imaging performance to those skilled in the art. Examples 1-3 use simulated values obtained by solving the diffusion equations (1) and (2) for θm and Mm under the conditions of table 2 as follows:
The examples simulate tissue phantom 300 of
Example 1 reconstructs fluorescent yield and lifetime with no absorption due to non-fluorescing chromophores. To simulate the experimental data for this example, the fluorescent yield, (ημa
The average values of ημa
The location of heterogeneity 302 was identified as consisting of all the grid points with ημa
Example 2 reconstructs fluorescent yield and lifetime with a simulated chromophore absorption configured to mimic tissue. The same hidden heterogeneity as well as optical parameters and simulation equipment were used as described in Example 1 except that a uniform background chromophore absorption coefficient, μa
Example 3 simulated two hidden heterogeneities in the tissue phantom (not shown in
Example 4 demonstrates the unexpected advantage of utilizing a fluorescent contrast agent with a fluorescence lifetime within an order of magnitude of the mean time-of-flight of the interrogating photons. This example compares by computational simulation, the contrast offered by a phosphorescent agent with a lifetime of about 1 millisecond to a fluorescent agent with a lifetime of about 1 nanosecond. Referring to
The conclusions of the simulation of Example 4 have further been empirically demonstrated by the experimentation of Example 5. The experimental equipment set-up for Example 5 is comparable to system 110. A tissue phantom is prepared by filling a cylindrical Plexiglas container having a 20 cm diameter and a 30.5 cm height with a 0.5% Intralipid solution (supplied by Kabi Parmacia, Clayton, N.C.). A heterogeneity is provided by placing a cylindrical glass container with a 9 mm inner diameter in the Plexiglas container and filling the glass cylinder with the intralipid solution and a contrast agent. The position of the heterogeneity within the Plexiglas container is adjusted with an x-y translation stage model number PMC200-P supplied by Newport of Irvine, Calif.
Example 5 experimentally confirms the phase contrast simulated in Example 4 by comparing phase contrast Δθ with a Ru(bpy)32+ phosphorescent contrast agent in the inner glass container (
The experimental equipment set-up for Example 6 is comparable to Example 5, except a single source and a single detection point were utilized. The source and detector were placed along the circumference a few degrees apart and the inner container was generally positioned along the midline defined between the source and detector. The x-y stage was used to adjust the position of the inner container along this midline to observe corresponding changes in phase shift θ and amplitude.
In Example 6, the response of two different fluorescent contrast agents ICG and 3-3′-Diethylthiatricarbocyanine Iodide (designated “DTTCI” herein and supplied by ACROS Organics, Fairlawn, N.J.) to an intensity-modulated excitation light having a wavelength of about 780 nm was detected. The excitation light was modulated at 80 MHz and 160 MHz in different trials corresponding to lines with different symbol shapes. ICG is an agent approved for hepatic and retinal diagnostic testing with a measured lifetime of about 0.58 nanoseconds and DTTCI is a common laser dye with lifetime of about 1.18 nanosecond.
The phase shift and modulation ratio of the tissue phantom in the absence of the heterogeneity was measured to provide the “absence” case needed to calculate phase contrast Δθ and modulation contrast ΔM. Next, an ICG contrast agent was prepared by adding about a 2.0 μmole ICG concentration to a 0.5% intralipid solution in the inner container. The ICG sample was then exposed to excitation light from the source and the response detected. This detection included measurement of absorption at a wavelength of 780 nm and fluorescence at 830 nm. The resulting phase contrast Δθ at the absorption wavelength (open symbols) and for fluorescence wavelength (closed symbols) for the ICG sample was plotted on the vertical axis of the graph provided in
After ICG sample was tested, a 4.2 μmole concentration of the DTTCI contrast agent was added to the 0.5% intralipid solution in the inner container to provide a DTTCI sample. The different concentration of the ICG and DTTCI contrast agents were selected to provide a fluorescent cross-section that is generally the same for both the ICG and DTTCI samples. The resulting phase contrast Δθ at the absorption wavelength (open symbols) and at the fluorescence wavelength (closed symbols) for the DTTCI sample is plotted on the vertical axis of the graph provided in
For both samples, the fluorescence decay process is single exponential, showing one lifetime, but the analysis and approach can be extended to dyes and contrast agents with more than one lifetime. Upon comparing the fluorescent phase and amplitude modulation generated by the two fluorescent contrast agents, the impact of fluorescence lifetime t over absorption may readily be observed. Indeed, it has been found that substantial contrast is present when the uptake is only 10:1 over the surroundings or background.
Example 7For Example 7, a phantom tissue is prepared by placing a tissue-mimicking Intralipid solution in a Plexiglas container. The excitation light source transilluminates the tissue phantom from the rear along a straight-line distance of about 8 centimeters. An image intensifier/CCD detection arrangement was utilized to detect the response. The experimental set-up for Example 7 was comparable to system 410 illustrated in
Embedded within the middle of the Plexiglas container tissue phantom were two micromolar intralipid solutions of 0.5 ml in separate containers each having a different fluorescent contrast agent. One vessel included an ICG contrast agent and the other vessel included a DTTCI contrast agent. Measurements of the fluorescent phase-shift, AC amplitude, DC intensity, and modulation (AC/DC) were conducted across the front of the phantom tissue in response to a 100 MHz modulated excitation light at 780 nm.
Example 8 is a live tissue study of mammary tissue from a dog, Sugar Limburg, which was a miniature poodle (age 10 years and weight 12.5 lbs.). An in vivo image of the right fifth mammary glad was taken after an in vivo injection with 1.3 cc of a 5% concentration of ICG fluorescent contrast agent. Interrogation was performed with an experimental set-up comparable to Example 7, with an excitation light wavelength of 789 nm and detection at a 830 nm wavelength. The modulation frequency was 100 MHz.
A frozen section of the right fifth mammary revealed two dark spots approximately 1 cm deep from the tissue surface which were histologically classified as reactive regional inguinal lymph nodes with no evidence of metastatic spread. The remaining tissue was classified as lobular hyperplasia with no evidence of tumor.
All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference; including U.S. patent application Ser. Nos. 60/039,318 filed 7 Feb. 1997 and 08/702,060 filed 23 Aug. 1996. While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and that all modifications that come within the spirit of the invention are desired to be protected.
Claims
1.-33. (canceled)
34. A method, comprising:
- evaluating ability of a number of fluorescent agents to provide image contrast between different tissue types, said evaluating including determining a relationship between degree of image contrast and at least one of fluorescence lifetime or fluorescence yield of the agent;
- selecting one of the agents based on said evaluating; and
- providing the selected one of the agents for introduction into a biologic tissue to enhance imaging performed in accordance with a mathematical expression modeling the behavior of multiply scattered light traveling through the tissue.
35. The method of claim 34, wherein the at least one is fluorescence lifetime.
36. The method of claim 34, wherein the mathematical expression corresponds to a diffusion equation approximation of multiply scattered light.
37. The method of claim 36, further comprising applying the diffusion equation approximation in a frequency domain form.
38. The method of claim 34, further comprising generating an image of the tissue by mapping spatial variation of a level of a fluorescence characteristic of the tissue.
39. The method of claim 34, wherein the mathematical expression is in a frequency domain form and the image contrast is provided in terms of at least one of phase shift contrast or modulation contrast.
40. A method, comprising:
- exposing a biologic tissue to a first excitation light;
- detecting a first emission from the tissue in response to the first excitation light;
- introducing a fluorescent contrast agent into the tissue after said detecting;
- exposing the tissue after said introducing to a second excitation light;
- sensing a second emission in response to the second excitation light;
- comparing data corresponding to the first emission with data corresponding to the second emission to evaluate contrast provided by the agent as a function of at least one of fluorescence lifetime, fluorescence yield, or quantum efficiency.
41. The method of claim 40, wherein the at least one is fluorescence lifetime.
42. The method of claim 41, wherein the fluorescence lifetime is in a range of about 0.1 to 10 nanoseconds.
43. The method of claim 41, wherein the fluorescence lifetime is in a range of about 0.5 to 5 nanoseconds.
44. The method of claim 41, wherein the fluorescence lifetime is in a range of about 0.2 to 2 nanoseconds.
45. The method of claim 40, further comprising evaluating the first and second emissions with a mathematical expression modeling the behavior of multiply scattered light traveling through the tissue.
46. The method of claim 45, wherein the mathematical expression corresponds to a diffusion equation approximation of multiply scattered light.
47. The method of claim 40, further comprising generating an image of the tissue by mapping spatial variation of a level of a fluorescence characteristic of the tissue.
48. The method of claim 47, wherein the fluorescence characteristic is at least one of fluorescence lifetime, fluorescence yield, or fluorescence quantum efficiency.
49. The method of claim 47, wherein said generating includes determining a modulation amplitude change and a phase change of the light emission relative to the excitation light.
50. The method of claim 49, wherein the fluorescence characteristic corresponds to the fluorescence lifetime.
51. The method of claim 40, wherein wavelength of the first excitation light is generally the same as wavelength of fluorescent light emitted by the agent in response to the second excitation light.
Type: Application
Filed: Jul 2, 2010
Publication Date: Dec 2, 2010
Inventors: Eva M. SEVICK-MURACA (College Station, TX), Tamara L. TROY (San Francisco, CA), Jeffery S. REYNOLDS (Granger, IN)
Application Number: 12/830,089
International Classification: A61B 6/00 (20060101);