Patents by Inventor Tamilmani Ethirajan

Tamilmani Ethirajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170170196
    Abstract: The present invention relates generally to integrated circuits and more particularly, to a structure and method of forming a hybrid circuit including a tunnel field-effect transistor (TFET) and a conventional field effect transistor (FET). Embodiments of the present invention include a hybrid amplifier which features a TFET common-source feeding a common-gate conventional FET (e.g. a MOSFET). A TFET gate may be electrically isolated from an output from a conventional FET. Thus, a high impedance input may be received by a TFET with a high-isolation output (i.e. low capacitance) at a conventional FET. A hybrid circuit amplifier including a TFET and a conventional FET may have a very high input impedance and a low miller capacitance.
    Type: Application
    Filed: April 6, 2016
    Publication date: June 15, 2017
    Inventors: Brent A. Anderson, Tamilmani Ethirajan, Edward J. Nowak
  • Patent number: 9613955
    Abstract: The present invention relates generally to integrated circuits and more particularly, to a structure and method of forming a hybrid circuit including a tunnel field-effect transistor (TFET) and a conventional field effect transistor (FET). Embodiments of the present invention include a hybrid amplifier which features a TFET common-source feeding a common-gate conventional FET (e.g. a MOSFET). A TFET gate may be electrically isolated from an output from a conventional FET. Thus, a high impedance input may be received by a TFET with a high-isolation output (i.e. low capacitance) at a conventional FET. A hybrid circuit amplifier including a TFET and a conventional FET may have a very high input impedance and a low miller capacitance.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Tamilmani Ethirajan, Edward J. Nowak
  • Publication number: 20160275225
    Abstract: Disclosed are a system, a method and a computer program product for accurately modeling the performance of a body-contacted, asymmetric double gate, dynamically depleted (DD), semiconductor-on-insulator (SOI) field effect transistor (FET). This modeling can be performed, using iterative processing, to determine the conditions (e.g., back gate bias voltage, front gate bias voltage, body resistance and body charge) under which the FET channel region transitions from being in a partially depleted (PD) state such that the FET functions as a PD SOI FET to being in a fully depleted (FD) state such that the FET functions as a FD SOI FET. Once these conditions are known (i.e., once the model is generated), the DD SOI FET can be incorporated into top-level integrated circuit designs with specifications that either meet the conditions or do not meet the conditions, depending upon the desired function of the DD SOI FET within the integrated circuit.
    Type: Application
    Filed: March 17, 2015
    Publication date: September 22, 2016
    Inventors: Anupam Dutta, Tamilmani Ethirajan
  • Publication number: 20150187665
    Abstract: Various embodiments include approaches for predicting unity gain frequency in a MOSFET. In some cases, a method includes predicting a unity gain frequency (fT) in a MOSFET device in a manufacturing line, the method including: measuring a first set of in-line direct current (DC) parameters of the MOSFET on the manufacturing line at a first drain voltage (Vd1); extracting a transconductance (Gm) from the first set of in-line DC parameters as a function of a gate-voltage (Vg) and the first drain-voltage (Vd1); measuring a second set of in-line DC parameters of the MOSFET on the manufacturing line at a second drain voltage (Vd2); extracting a total gate capacitance (Cgg) from the second set of in-line DC parameters as a function of the gate-voltage (Vg); and predicting the unity gain frequency (fT) of the MOSFET based upon the extracted transconductance (Gm) and the extracted total gate capacitance (Cgg).
    Type: Application
    Filed: January 2, 2014
    Publication date: July 2, 2015
    Applicant: International Business Machines Corporation
    Inventors: Amit A. Dikshit, Tamilmani Ethirajan, Shrinivas J. Pandharpure, Vaidyanathan T. Subramanian, Josef S. Watts