Patents by Inventor Tao Xia
Tao Xia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10523414Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: GrantFiled: April 17, 2019Date of Patent: December 31, 2019Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Patent number: 10511432Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: GrantFiled: April 17, 2019Date of Patent: December 17, 2019Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Patent number: 10491368Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: GrantFiled: April 16, 2019Date of Patent: November 26, 2019Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Patent number: 10461921Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: GrantFiled: April 17, 2019Date of Patent: October 29, 2019Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190253157Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 16, 2019Publication date: August 15, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190253234Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 16, 2019Publication date: August 15, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190243409Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 17, 2019Publication date: August 8, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190245676Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 16, 2019Publication date: August 8, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190243408Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 17, 2019Publication date: August 8, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Publication number: 20190245678Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.Type: ApplicationFiled: April 17, 2019Publication date: August 8, 2019Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
-
Patent number: 10084393Abstract: A method of putting a converter module of a cascade converter system into operation, wherein the cascade converter system includes: n converter modules; n bypass switch modules; and a system controller, wherein the method includes: a module pre-plug-in step: m bypass switch modules of the n bypass switch modules being in a non-bypass state, and remaining n-m bypass switch modules being in a bypass state, the system controller communicating with the module controllers of the m converter modules, such that the m converter modules operate according to a first control signal, wherein 1?m<n; a module plug-in step: the system controller controls the (m+1)th bypass switch module to change from the bypass state to the non-bypass state; and a module post-plug-in step: the system controller communicating with the module controllers of the m+1 converter modules, such that the m+1 converter modules operate according to a second control signal.Type: GrantFiled: January 15, 2018Date of Patent: September 25, 2018Assignee: Delta Electronics (Shanghai) CO., LTDInventors: Tao Xia, Cheng Lu
-
Publication number: 20180262117Abstract: The present disclosure provides a power electronic conversion unit and a power electronic conversion system. The power electronic conversion unit includes: two AC/DC subunits, AC ports of which are coupled in series to form a first port; two half-bridge subunits, DC ports of which are coupled to DC ports of the two AC/DC subunits, respectively; and a transformer, wherein two terminals of a primary winding of the transformer are coupled to a midpoint of bridge arms of the two half-bridge subunits, And a power electronic conversion system comprises a plurality of power electronic conversion units.Type: ApplicationFiled: January 26, 2018Publication date: September 13, 2018Applicant: Delta Electronics (Shanghai) CO., LTDInventors: Cheng LU, Wenfei HU, Tao XIA
-
Publication number: 20180212535Abstract: A method of putting a converter module of a cascade converter system into operation, wherein the cascade converter system includes: n converter modules; n bypass switch modules; and a system controller, wherein the method includes: a module pre-plug-in step: m bypass switch modules of the n bypass switch modules being in a non-bypass state, and remaining n-m bypass switch modules being in a bypass state, the system controller communicating with the module controllers of the m converter modules, such that the m converter modules operate according to a first control signal, wherein 1?m<n; a module plug-in step: the system controller controls the (m+1)th bypass switch module to change from the bypass state to the non-bypass state; and a module post-plug-in step: the system controller communicating with the module controllers of the m+1 converter modules, such that the m+1 converter modules operate according to a second control signal.Type: ApplicationFiled: January 15, 2018Publication date: July 26, 2018Applicant: Delta Electronics (Shanghai) CO., LTDInventors: Tao XIA, Cheng LU
-
Publication number: 20180156852Abstract: A method for monitoring capacitance of DC bus capacitor of a power electronic converter is provided, wherein the power electronic converter includes at least one AC/DC conversion circuit and the DC bus capacitor, a power input/output interface of the AC/DC conversion circuit including a first terminal and a second terminal. The first terminal is connected to an AC grid with a frequency of f, the second terminal is connected to the DC bus capacitor, f is any positive real number, and the method includes: measuring a pulsating power with a frequency of 2f flowing through the DC bus capacitor and a voltage on the DC bus capacitor; and calculating the capacitance of the DC bus capacitor based on the pulsating power and the voltage on the DC bus capacitor. An apparatus for monitoring the capacitance of the DC bus capacitor is provided correspondingly.Type: ApplicationFiled: April 10, 2017Publication date: June 7, 2018Applicant: Delta Electronics (Shanghai) CO., LTDInventors: Tao XIA, Cheng LU
-
Patent number: 9653916Abstract: A power supply system includes an input stage converting circuit, a first energy storage component, and an output stage converting circuit. The first energy storage component is electrically coupled to the input stage converting circuit, and the output stage converting circuit is electrically coupled to the first energy storage component. The input stage converting circuit is configured to charge the first energy storage component, and the first energy storage component stores charging electricity. The output stage converting circuit is configured to convert the charging electricity into output electricity and provide the output electricity to a load. The input stage converting circuit has a first electric power, and the output stage converting circuit has a second electric power greater than the first electric power. A method for converting power of the power converter is also disclosed herein.Type: GrantFiled: June 3, 2014Date of Patent: May 16, 2017Assignee: DELTA ELECTRONICS, INC.Inventors: Xing-Kuan Guo, Li-Tao Xia
-
Patent number: 9627965Abstract: A power converter includes a DC/DC converting circuit and a first energy storage element. The DC/DC converting circuit includes a first output terminal and a second output terminal. The first energy storage element includes a first terminal and a second terminal. The first output terminal of the DC/DC converting circuit is electrically connected to one terminal of an external load. The first terminal of the first energy storage element is electrically connected to the second output terminal of the DC/DC converting circuit. The second terminal of the first energy storage element is electrically connected to the other terminal of the external load. The DC/DC converting circuit is configured to provide a variable electric power. The power converter provides the power supply according to the DC/DC converting circuit and the first energy storage element, and the variable electric power is less than the power required by the external load.Type: GrantFiled: June 3, 2014Date of Patent: April 18, 2017Assignee: DELTA ELECTRONICS, INC.Inventors: Xing-Kuan Guo, Li-Tao Xia
-
Publication number: 20140354058Abstract: A power converter includes a DC/DC converting circuit and a first energy storage element. The DC/DC converting circuit includes a first output terminal and a second output terminal. The first energy storage element includes a first terminal and a second terminal. The first output terminal of the DC/DC converting circuit is electrically connected to one terminal of an external load. The first terminal of the first energy storage element is electrically connected to the second output terminal of the DC/DC converting circuit. The second terminal of the first energy storage element is electrically connected to the other terminal of the external load. The DC/DC converting circuit is configured to provide a variable electric power. The power converter provides the power supply according to the DC/DC converting circuit and the first energy storage element, and the variable electric power is less than the power required by the external load.Type: ApplicationFiled: June 3, 2014Publication date: December 4, 2014Inventors: Xing-Kuan GUO, Li-Tao XIA
-
Publication number: 20140354051Abstract: A power supply system includes an input stage converting circuit, a first energy storage component, and an output stage converting circuit. The first energy storage component is electrically coupled to the input stage converting circuit, and the output stage converting circuit is electrically coupled to the first energy storage component. The input stage converting circuit is configured to charge the first energy storage component, and the first energy storage component stores charging electricity. The output stage converting circuit is configured to convert the charging electricity into output electricity and provide the output electricity to a load. The input stage converting circuit has a first electric power, and the output stage converting circuit has a second electric power greater than the first electric power. A method for converting power of the power converter is also disclosed herein.Type: ApplicationFiled: June 3, 2014Publication date: December 4, 2014Applicant: DELTA ELECTRONICS, INC.Inventors: Xing-Kuan GUO, Li-Tao XIA
-
Patent number: 8383403Abstract: In one aspect of the present disclosure there is provided a method for preparing reticulocyte mimetics. In another aspect of the present disclosure there are provided reticulocyte mimetics obtained using the method. In yet another aspect of the present disclosure there is provided a whole blood reference control including the reticulocyte mimetics as provided. In still another aspect of the present disclosure there is provided a composition useful for preparing reticulocyte mimetics.Type: GrantFiled: May 5, 2010Date of Patent: February 26, 2013Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.Inventors: Lu Wang, Zuyue Xu, Tao Xia
-
Publication number: 20130020989Abstract: An AC-DC power converter is provided, and includes a phase-shifting transformer, at least one rectifier set and at least one DC-DC converter, wherein the phase-shifting transformer has a primary winding and at least one secondary winding, and the at least one secondary winding is configured as at least one winding unit; each rectifier set has at least one rectifier, and each rectifier is electrically connected with the secondary winding of a corresponding winding unit; and the DC-DC converter is electrically connected with a corresponding rectifier set and outputs a predetermined DC voltage. A DC charging station is also provided correspondingly. The phase-shifting transformer has at least one secondary winding, and the secondary windings are configured as at least one winding unit, thus providing different phase-shifting angles based on the actual number of windings in each winding unit, thereby decreasing current harmonic components and increasing the system power factor.Type: ApplicationFiled: November 9, 2011Publication date: January 24, 2013Applicant: Delta Electronics (Shanghai) Co., Ltd.Inventors: Li-Tao Xia, Tsung-Yuan Wu, Jin-Fa Zhang