Patents by Inventor Tao-Yi Fu

Tao-Yi Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10324046
    Abstract: Methods and systems for monitoring a non-defect related characteristic of a patterned wafer are provided. One computer-implemented method includes generating output responsive to light from a patterned wafer using an inspection system. The method also includes determining differences between a value of a non-defect related characteristic of the patterned wafer and a known value of the non-defect related characteristic based on differences between one or more attributes of the output and one or more attributes of other output of the inspection system for a different patterned wafer having the known value of the non-defect related characteristic.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: June 18, 2019
    Assignee: KLA-Tencor Corp.
    Inventors: Tao-Yi Fu, Steve Lange, Lisheng Gao, Xuguang Jiang, Ping Gu, Sylvain Muckenhirn
  • Patent number: 9625810
    Abstract: Methods and systems for source multiplexing illumination for mask inspection are disclosed. Such illumination systems enable EUV sources of small brightness to be used for EUV mask defect inspection at nodes below the 22 nm. Utilizing the multiple plane or conic mirrors that are either attached to a continuously rotating base with different angles or individually rotating to position for each pulse, the reflected beams may be directed through a common optical path. The light may then be focused by a condenser to an EUV mask. The reflected and scattered light from the mask may then be imaged by some imaging optics onto some sensors. The mask image may be subsequently processed for defect information.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 18, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Daimian Wang, Daniel Wack, Damon F. Kvamme, Tao-Yi Fu
  • Patent number: 9151718
    Abstract: The disclosure is directed to a system and method of providing illumination for reticle inspection. According to various embodiments of the disclosure, a multiplexing mirror system receives pulses of illumination from a plurality of illumination sources and directs the pulses of illumination along an illumination path to a plurality of field mirror facets. The field mirror facets receive at least a portion of illumination from the illumination path and direct at least a portion of the illumination to a plurality of pupil mirror facets. The pupil mirror facets receive at least a portion of illumination reflected from the field mirror facets and direct the portion of illumination along a delivery path to a reticle for imaging and/or defect inspection.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 6, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Daimian Wang, Tao-Yi Fu, Damon F. Kvamme
  • Publication number: 20130242295
    Abstract: The disclosure is directed to a system and method of providing illumination for reticle inspection. According to various embodiments of the disclosure, a multiplexing mirror system receives pulses of illumination from a plurality of illumination sources and directs the pulses of illumination along an illumination path to a plurality of field mirror facets. The field mirror facets receive at least a portion of illumination from the illumination path and direct at least a portion of the illumination to a plurality of pupil mirror facets. The pupil mirror facets receive at least a portion of illumination reflected from the field mirror facets and direct the portion of illumination along a delivery path to a reticle for imaging and/or defect inspection.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 19, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Daimian Wang, Tao-Yi Fu, Damon F. Kvamme
  • Patent number: 8384887
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 26, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 8355140
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 15, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Publication number: 20120236281
    Abstract: Methods and systems for source multiplexing illumination for mask inspection are disclosed. Such illumination systems enable EUV sources of small brightness to be used for EUV mask defect inspection at nodes below the 22 nm. Utilizing the multiple plane or conic mirrors that are either attached to a continuously rotating base with different angles or individually rotating to position for each pulse, the reflected beams may be directed through a common optical path. The light may then be focused by a condenser to an EUV mask. The reflected and scattered light from the mask may then be imaged by some imaging optics onto some sensors. The mask image may be subsequently processed for defect information.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 20, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Daimian Wang, Daniel Wack, Damon F. Kvamme, Tao-Yi Fu
  • Publication number: 20110181891
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Patent number: 7924434
    Abstract: Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 12, 2011
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Shiow-Hwei Hwang, Tao-Yi Fu, Xiumei Liu
  • Patent number: 7858911
    Abstract: A semiconductor wafer inspection system and method is provided which uses a multiple element arrangement, such as an offset fly lens array. The preferred embodiment uses a laser to transmit light energy toward a beam expander, which expands the light energy to create an illumination field. An offset fly lens array converts light energy from the illumination field into an offset pattern of illumination spots. A lensing arrangement, including a first lens, a transmitter/reflector, an objective, and a Mag tube imparts light energy onto the specimen and passes the light energy toward a pinhole mask. The pinhole mask is mechanically aligned with the offset fly lens array. Light energy passing through each pinhole in the pinhole mask is directed toward a relay lens, which guides light energy onto a sensor. The offset fly lens array corresponds to the pinhole mask.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 28, 2010
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao-Yi Fu, Bin-Ming Benjanim Tsai, Scott A. Young
  • Publication number: 20100238433
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 23, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 7738089
    Abstract: Methods and systems for inspection of a specimen using different parameters are provided. One computer-implemented method includes determining optimal parameters for inspection based on selected defects. This method also includes setting parameters of an inspection system at the optimal parameters prior to inspection. Another method for inspecting a specimen includes illuminating the specimen with light having a wavelength below about 350 nm and with light having a wavelength above about 350 nm. The method also includes processing signals representative of light collected from the specimen to detect defects or process variations on the specimen. One system configured to inspect a specimen includes a first optical subsystem coupled to a broadband light source and a second optical subsystem coupled to a laser. The system also includes a third optical subsystem configured to couple light from the first and second optical subsystems to an objective, which focuses the light onto the specimen.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 15, 2010
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Steve R. Lange, Paul Frank Marella, Nat Ceglio, Shiow-Hwei Hwang, Tao-Yi Fu
  • Patent number: 7554655
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 30, 2009
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao Yi Fu, Gershon Perelman, Bin-Ming Benjamin Tsai
  • Patent number: 7535563
    Abstract: Systems configured to inspect a specimen are provided. One system includes an illumination subsystem configured to illuminate a two-dimensional field of view on the specimen. The system also includes a collection subsystem configured to collect light scattered from the specimen. In addition, the system includes an array of micro-mirrors configured to reflect a two-dimensional pattern of light diffracted from periodic structures on the specimen out of the optical path of the system without reflecting light across an entire dimension of the array out of the optical path. The system further includes a detection subsystem configured to generate output responsive to light reflected by the array into the optical path. The output can be used to detect defects on the specimen. In one embodiment, the system includes an optical element configured to increase the uniformity of the wavefront of the light reflected by the array into the optical path.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: May 19, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Grace Hsiu-Ling Chen, Tao-Yi Fu, Jamie Sullivan, Shing Lee, Greg Kirk
  • Patent number: 7522275
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens. A brightfield beamsplitter in the system is removable, and preferably replaced with a blank when performing darkfield illumination. Light level control for the system is provided by a dual polarizer first stage.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: April 21, 2009
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao-Yi Fu, Gershon Perelman, Bin-Ming Benjamin Tsai
  • Publication number: 20080273196
    Abstract: A semiconductor wafer inspection system and method is provided which uses a multiple element arrangement, such as an offset fly lens array. The preferred embodiment uses a laser to transmit light energy toward a beam expander, which expands the light energy to create an illumination field. An offset fly lens array converts light energy from the illumination field into an offset pattern of illumination spots. A lensing arrangement, including a first lens, a transmitter/reflector, an objective, and a Mag tube imparts light energy onto the specimen and passes the light energy toward a pinhole mask. The pinhole mask is mechanically aligned with the offset fly lens array. Light energy passing through each pinhole in the pinhole mask is directed toward a relay lens, which guides light energy onto a sensor. The offset fly lens array corresponds to the pinhole mask.
    Type: Application
    Filed: July 11, 2008
    Publication date: November 6, 2008
    Applicant: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao-Yi Fu, Bin-Ming Benjanim Tsai, Scott A. Young
  • Patent number: 7436503
    Abstract: Accordingly, the present invention provides methods and apparatus for performing a darkfield inspection on a specimen having periodic structures thereon while substantially reducing or eliminating the long range ringing response, which is typically produced by a traditional Fourier filter mask used to eliminate the diffraction caused by the periodic structures. In one embodiment, an apparatus for inspecting a specimen by detecting optical beams scattered from the specimen. The apparatus includes a beam generator for providing and directing an incident beam towards a specimen and an array subtraction device for substantially subtracting a periodic component from an output beam scattered from the specimen in response to the incident beam. The periodic component corresponds to at least one periodic structure on the specimen, and the subtraction is performed so as to substantially reduce or eliminate a ringing response from the output beam.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: October 14, 2008
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Grace Hsiu-Ling Chen, Tao-Yi Fu, Evan Mapoles
  • Publication number: 20080225298
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens.
    Type: Application
    Filed: May 22, 2008
    Publication date: September 18, 2008
    Applicant: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao Yi Fu, Gershon Perelman, Bin-Ming Benjamin Tsai
  • Patent number: 7399950
    Abstract: A semiconductor wafer inspection system and method is provided which uses a multiple element arrangement, such as an offset fly lens array. The preferred embodiment uses a laser to transmit light energy toward a beam expander, which expands the light energy to create an illumination field. An offset fly lens array converts light energy from the illumination field into an offset pattern of illumination spots. A lensing arrangement, including a first lens, a transmitter/reflector, an objective, and a Mag tube imparts light energy onto the specimen and passes the light energy toward a pinhole mask. The pinhole mask is mechanically aligned with the offset fly lens array. Light energy passing through each pinhole in the pinhole mask is directed toward a relay lens, which guides light energy onto a sensor. The offset fly lens array corresponds to the pinhole mask.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: July 15, 2008
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher R. Fairley, Tao-Yi Fu, Bin-Ming Benjamin Tsai, Scott A. Young
  • Patent number: 7379173
    Abstract: The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens. Light level control for the system is provided by a dual polarizer first stage. Light exiting from the second polarizer passes through a filter which absorbs a portion of the light and comprises the second stage of light control.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: May 27, 2008
    Assignee: KLA-Tencor Corporation
    Inventors: Christopher R Fairley, Tao-Yi Fu, Gershon Perelman, Bin-Ming Benjamin Tsai