Patents by Inventor Te-An Lin

Te-An Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220352184
    Abstract: Various embodiments of the present disclosure are directed towards a method of forming a ferroelectric memory device. In the method, a pair of source/drain regions is formed in a substrate. A gate dielectric and a gate electrode are formed over the substrate and between the pair of source/drain regions. A polarization switching structure is formed directly on a top surface of the gate electrode. By arranging the polarization switching structure directly on the gate electrode, smaller pad size can be realized, and more flexible area ratio tuning can be achieved compared to arranging the polarization switching structure under the gate electrode with the aligned sidewall and same lateral dimensions. In addition, since the process of forming gate electrode can endure higher annealing temperatures, such that quality of the ferroelectric structure is better controlled.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Bo-Feng Young, Chung-Te Lin, Sai-Hooi Yeong, Yu-Ming Lin, Sheng-Chih Lai, Chih-Yu Chang, Han-Jong Chia
  • Publication number: 20220344513
    Abstract: A ferroelectric field effect transistor (FeFET) having a double-gate structure includes a first gate electrode, a first ferroelectric material layer over the first gate electrode, a semiconductor channel layer over the first ferroelectric material layer, source and drain electrodes contacting the semiconductor channel layer, a second ferroelectric material layer over the semiconductor channel layer, and a second gate electrode over the second ferroelectric material layer.
    Type: Application
    Filed: September 21, 2021
    Publication date: October 27, 2022
    Inventors: Yen-Chieh HUANG, Song-Fu LIAO, Po-Ting LIN, Hai-Ching CHEN, Sai-Hooi YEONG, Yu-Ming LIN, Chung-Te LIN
  • Publication number: 20220344486
    Abstract: A semiconductor device and methods of fabricating the same are disclosed. The method can include forming a fin structure on a substrate, forming a source/drain (S/D) region on the fin structure, forming a gate structure on the fin structure adjacent to the S/D region, and forming a capping structure on the gate structure. The forming the capping structure includes forming a conductive cap on the gate structure, forming a cap liner on the conductive cap, and forming a carbon-based cap on the cap liner. The method further includes forming a first contact structure on the S/D region, forming an insulating cap on the first contact structure, and forming a second contact structure on the conductive cap.
    Type: Application
    Filed: April 23, 2021
    Publication date: October 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chin CHANG, Ming-Huan Tsai, Li-Te Lin, Pinyen Lin
  • Publication number: 20220344168
    Abstract: A patterning method includes at least the following steps. A first material layer is provided. A second material layer is provided over the first material layer. The second material layer partially exposes the first material layer. A passivation layer is formed over the first material layer and the second material layer. A growth rate of the passivation layer on the second material layer is greater than a growth rate of the passivation layer on the first material layer. A first etching process is performed to remove a portion of the passivation layer and a portion of the first material layer.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Christine Y. Ouyang, Li-Te Lin
  • Publication number: 20220344488
    Abstract: A semiconductor structure includes a gate stack over a substrate and a blocking layer disposed between the gate stack and the substrate. The gate stack includes an upper electrode, a lower electrode, a ferroelectric layer disposed between the upper electrode and the lower electrode, and a first seed layer disposed between the ferroelectric layer and the lower electrode. The blocking layer includes doped hafnium oxide.
    Type: Application
    Filed: April 23, 2021
    Publication date: October 27, 2022
    Inventors: YEN-CHIEH HUANG, HAI-CHING CHEN, YU-MING LIN, CHUNG-TE LIN
  • Publication number: 20220344504
    Abstract: A disclosed semiconductor device includes a substrate, a gate electrode formed on the substrate, a gate dielectric layer formed over the gate electrode, a source electrode located adjacent to a first side of the gate electrode, and a drain electrode located adjacent to a second side of the gate electrode. A gate dielectric formed from an etch-stop layer and/or high-k dielectric layer separates the source electrode from the gate electrode and substrate and separates the drain electrode from the gate electrode and the substrate. First and second oxide layers are formed over the gate dielectric and are located adjacent to the source electrode on the first side of the gate electrode and located adjacent to the drain electrode on the second side of the gate electrode. A semiconductor layer is formed over the first oxide layer, the second oxide layer, the source electrode, the drain electrode, and the gate dielectric.
    Type: Application
    Filed: November 10, 2021
    Publication date: October 27, 2022
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20220344202
    Abstract: A disclosed method of fabricating a semiconductor structure includes forming a first conductive pattern over a substrate, with the first conductive pattern including a first conductive line and a second conductive line. A barrier layer may be conformally formed over the first conductive line and the second conductive line of the first conductive pattern. An insulating layer may be formed over the barrier layer. The insulating layer may be patterned to form openings between conductive lines of the first conductive pattern a second conductive pattern may be formed in the openings. The second conductive pattern may include a third conductive line is physically separated from the first conductive pattern by the barrier layer. The presence of the barrier layer reduces the risk of a short circuit forming between the first and second conductive patterns. In this sense, the second conductive pattern may be self-aligned relative to the first conductive pattern.
    Type: Application
    Filed: November 10, 2021
    Publication date: October 27, 2022
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20220336733
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes providing a substrate having a first region and a second region, forming an array of memory cells over the first region of the substrate, and forming a memory-level dielectric layer around the array of memory cells. Each of the memory cells includes, from bottom to top, a bottom electrode, a memory material layer stack, and a top electrode. The exemplary method also includes forming a metal line directly interfacing a respective row of top electrodes of the array of memory cells. The metal line also directly interfaces a top surface of the memory-level dielectric layer.
    Type: Application
    Filed: September 1, 2021
    Publication date: October 20, 2022
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin
  • Publication number: 20220336731
    Abstract: A method for fabricating magnetoresistive random-access memory cells (MRAM) on a substrate is provided. The substrate is formed with a magnetic tunneling junction (MTJ) layer thereon. When the MTJ layer is etched to form the MRAM cells, there may be metal components deposited on a surface of the MRAM cells and between the MRAM cells. The metal components are then removed by chemical reaction. However, the removal of the metal components may form extra substances on the substrate. A further etching process is then performed to remove the extra substances by physical etching.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chang-Lin YANG, Chung-Te LIN, Sheng-Yuan CHANG, Han-Ting LIN, Chien-Hua HUANG
  • Publication number: 20220336475
    Abstract: A memory array includes a plurality of memory cells stacked up along a first direction. Each of the memory cells include a memory stack, connecting lines, and insulating layers. The memory stack includes a first dielectric layer, a channel layer disposed on the first dielectric layer, a charge trapping layer disposed on the channel layer, a second dielectric layer disposed on the charge trapping layer, and a gate layer disposed in between the channel layer and the second dielectric layer. The connecting lines are extending along the first direction and covering side surfaces of the memory stack. The insulating layers are extending along the first direction, wherein the insulating layers are located aside the connecting lines and covering the side surfaces of the memory stack.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Chih Lai, Chung-Te Lin
  • Publication number: 20220336635
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming first semiconductor layers and second semiconductor layers on a substrate, and the first semiconductor layers and the second semiconductor layers are alternately stacked. The method includes forming a dummy gate structure over the first semiconductor layers and the second semiconductor layers, and removing a portion of the first semiconductor layers and second semiconductor layers to form a S/D trench. The method also includes removing the second semiconductor layers to form a recess connected to the S/D trench. The method includes forming a dummy dielectric layer in the recess after the dummy gate structure is formed, and the dummy dielectric layer is exposed by the S/D trench. The method includes removing a portion of the dummy dielectric layer to form a cavity and forming an inner spacer layer in the cavity.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tze-Chung LIN, Han-Yu LIN, Li-Te LIN, Pinyen LIN
  • Publication number: 20220336671
    Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
  • Publication number: 20220336732
    Abstract: A method for fabricating magnetoresistive random-access memory cells (MRAM) on a substrate is provided. The substrate is formed with a magnetic tunneling junction (MTJ) layer thereon. When the MTJ layer is etched to form the MRAM cells, there may be metal components deposited on a surface of the MRAM cells and between the MRAM cells by chemical reaction. The metal components are then removed by chemical reaction.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 20, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chang-Lin YANG, Chung-Te LIN, Sheng-Yuan CHANG, Han-Ting LIN, Chien-Hua HUANG
  • Publication number: 20220336623
    Abstract: A semiconductor device includes first and second gate structures over a substrate, the first gate structure has a first width that is smaller than a second width of the second gate structure, in which a lower portion of the first gate structure having a first work-function material (WFM) layer, the first WFM layer having a top surface, a lower portion of the second gate structure having a second WFM layer, the second WFM layer having a top surface. A first gate electrode is disposed over the first WFM layer and a second gate electrode has a lower portion disposed in the second WFM layer, in which the first gate electrode has a first width that is smaller than a second width of the second gate electrode, and wherein the top surface of the second WFM layer is at a level below a top surface of the second gate electrode.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Chen LO, Jung-Hao CHANG, Li-Te LIN, Pinyen LIN
  • Publication number: 20220336498
    Abstract: Various embodiments of the present disclosure are directed towards a metal-ferroelectric-insulator-semiconductor (MFIS) memory device, as well as a method for forming the MFIS memory device. According to some embodiments of the MFIS memory device, a lower source/drain region and an upper source/drain region are vertically stacked. A semiconductor channel overlies the lower source/drain region and underlies the upper source/drain region. The semiconductor channel extends from the lower source/drain region to the upper source/drain region. A control gate electrode extends along a sidewall of the semiconductor channel and further along individual sidewalls of the lower and upper source/drain regions. A gate dielectric layer and a ferroelectric layer separate the control gate electrode from the semiconductor channel and the lower and upper source/drain regions.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Sheng-Chih Lai, Chung-Te Lin
  • Publication number: 20220336611
    Abstract: The present disclosure describes a method to form a semiconductor device with air inner spacers. The method includes forming a semiconductor structure on a first side of a substrate. The semiconductor structure includes a fin structure having multiple semiconductor layers on the substrate, an epitaxial structure on the substrate and in contact with the multiple semiconductor layers, a gate structure wrapped around the multiple semiconductor layers, and an inner spacer structure between the gate structure and the epitaxial structure. The method further includes removing a portion of the substrate from a second side of the substrate to expose the epitaxial structure and the inner spacer structure, forming an oxide layer on the epitaxial structure on the second side of the substrate, and removing a portion of the inner spacer structure to form an opening. The second side is opposite to the first side of the substrate.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 20, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fo-Ju LIN, Fang-Wei Lee, Chih-Long Chiang, Li-Te Lin, Pinyen Lin
  • Publication number: 20220328346
    Abstract: An integrated circuit device includes a dielectric structure within a metal interconnect over a substrate. The dielectric structure includes a cavity. A first dielectric layer provides a roof for the cavity. A second dielectric layer provides a floor for the cavity. A material distinct from the first dielectric layer and the second dielectric layer provides a side edge for the cavity. In a central area of the cavity, the cavity has a constant height. The height may be selected to provide a low parasitic capacitance between features above and below the cavity. The roof of the cavity may be flat. A gate dielectric may be formed over the roof. The dielectric structure is particularly useful for reducing parasitic capacitances when employing back-end-of-line (BEOL) transistors.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 13, 2022
    Inventors: Li-Shyue Lai, Gao-Ming Wu, Katherine H. Chiang, Chung-Te Lin
  • Publication number: 20220328755
    Abstract: The present disclosure provides a semiconductor structure, including a first metal line over a first region of the substrate, a first magnetic tunnel junction (MTJ) and a second MTJ over the first region of the substrate, and a top electrode extending over the first MTJ and the second MTJ, wherein the top electrode includes a protruding portion at a bottom surface of the top electrode.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: YU-FENG YIN, TAI-YEN PENG, AN-SHEN CHANG, HAN-TING TSAI, QIANG FU, CHUNG-TE LIN
  • Publication number: 20220328560
    Abstract: Various embodiments of the present application are directed towards a bipolar selector having independently tunable threshold voltages, as well as a memory cell comprising the bipolar selector and a memory array comprising the memory cell. In some embodiments, the bipolar selector comprises a first unipolar selector and a second unipolar selector. The first and second unipolar selectors are electrically coupled in parallel with opposite orientations and may, for example, be diodes or some other suitable unipolar selectors. By placing the first and second unipolar selectors in parallel with opposite orientations, the first unipolar selector independently defines a first threshold voltage of the bipolar selector and the second unipolar selector independently defines a second threshold voltage of the bipolar selector. As a result, the first and second threshold voltages can be independently tuned by adjusting parameters of the first and second unipolar selectors.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 13, 2022
    Inventors: Sheng-Chih Lai, Chung-Te Lin, Min Cao, Randy Osborne
  • Publication number: 20220328758
    Abstract: Semiconductor structure and methods of forming the same are provided. An exemplary method includes receiving a workpiece including a magnetic tunneling junction (MTJ) and a conductive capping layer disposed on the MTJ, depositing a first dielectric layer over the workpiece, performing a first planarization process to the first dielectric layer, and after the performing of the first planarization process, patterning the first dielectric layer to form an opening exposing a top surface of the conductive capping layer, selectively removing the conductive capping layer. The method also includes depositing an electrode layer to fill the opening and performing a second planarization process to the workpiece such that a top surface of the electrode layer and a top surface of the first dielectric layer are coplanar.
    Type: Application
    Filed: September 2, 2021
    Publication date: October 13, 2022
    Inventors: Yu-Feng Yin, Min-Kun Dai, Chien-Hua Huang, Chung-Te Lin